加药
伏立康唑
药理学
CYP2C19型
药代动力学
药效学
医学
移植
内科学
细胞色素P450
抗真菌
皮肤病科
新陈代谢
作者
Mengyuan Xie,Manxue Jiang,Hongyu Qiu,Rong Li,Lingti Kong
摘要
This study aimed to optimize the dosing regimens of voriconazole (VRC) for pediatric patients after hematopoietic cell transplantation with different cytochrome P450 (CYP) 2C19 phenotypes and body weights, based on pharmacokinetic (PK)/pharmacodynamic (PD) analysis. The PK parameters of VRC were derived from previous literature. Combined with key factors affecting VRC, patients were categorized into 9 subgroups based on different CYP2C19 phenotypes (poor metabolizer/intermediate metabolizer, normal metabolizer, and rapid metabolizer/ultrarapid metabolizer) and typical body weights (15, 40, and 65 kg). Monte Carlo simulation was used to investigate dosing regimens for different groups. The area under the 24-hour free drug concentration-time curve to the minimum inhibitory concentration (MIC) > 25 was used as the target value for effective treatment. The probability of target achievement and the cumulative fraction of response were determined on the basis of the assumed MICs and MICs distribution frequency of Aspergillus species and Candida species. When the MIC was ≤1 mg/L, 4 mg/kg every 12 hours was sufficient for optimal effects in groups 1-3 and groups 5 and 6; however, 6 mg/kg every 12 hours was required for group 4, and 8 mg/kg every 12 hours was required for groups 7-9. In empirical treatment, lower (2-6 mg/kg every 12 hours) and higher (6-12 mg/kg every 12 hours) dosing regimens were recommended for Candida spp. and Aspergillus spp., respectively. Our findings will assist in selecting appropriate dosing regimens of VRC for pediatric patients after hematopoietic cell transplantation with different CYP2C19 phenotypes and body weights. Clinically, it is better to continuously adjust the dosing on the basis of the therapeutic drug monitoring.
科研通智能强力驱动
Strongly Powered by AbleSci AI