商业化
电气化
生产(经济)
电池(电)
计算机科学
持续性
领域(数学分析)
锂离子电池
过程(计算)
产品(数学)
领域(数学)
工业工程
系统工程
风险分析(工程)
工程类
电
业务
电气工程
经济
营销
几何学
生态学
数学
量子力学
纯数学
功率(物理)
生物
宏观经济学
数学分析
物理
操作系统
作者
Sajedeh Haghi,Marc Francis V. Hidalgo,Mona Faraji Niri,Rüdiger Daub,James Marco
标识
DOI:10.1002/batt.202300046
摘要
Abstract With the global quest for improved sustainability, partially realized through the electrification of the transport and energy sectors, battery cell production has gained ever‐increasing attention. An in‐depth understanding of battery production processes and their interdependence is crucial for accelerating the commercialization of material developments, for example, at the volume predicted to underpin future electric vehicle production. Over the last five years, machine learning approaches have shown significant promise in understanding and optimizing the battery production processes. Based on a systematic mapping study, this comprehensive review details the state‐of‐the‐art applications of machine learning within the domain of lithium‐ion battery cell production and highlights the fundamental aspects, such as product and process parameters and adopted algorithms. The compiled findings derived from multi‐perspective comparisons demonstrate the current capabilities and reveal future research opportunities in this field to further accelerate sustainable battery production.
科研通智能强力驱动
Strongly Powered by AbleSci AI