Advances in Medical Image Segmentation: A Comprehensive Review of Traditional, Deep Learning and Hybrid Approaches

人工智能 分割 深度学习 计算机科学 卷积神经网络 图像分割 阈值 基于分割的对象分类 机器学习 尺度空间分割 模式识别(心理学) 图像(数学)
作者
Yan Xu,Rixiang Quan,Weiting Xu,Yi‐Wen Huang,Xiaolong Chen,Fengyuan Liu
出处
期刊:Bioengineering [Multidisciplinary Digital Publishing Institute]
卷期号:11 (10): 1034-1034 被引量:21
标识
DOI:10.3390/bioengineering11101034
摘要

Medical image segmentation plays a critical role in accurate diagnosis and treatment planning, enabling precise analysis across a wide range of clinical tasks. This review begins by offering a comprehensive overview of traditional segmentation techniques, including thresholding, edge-based methods, region-based approaches, clustering, and graph-based segmentation. While these methods are computationally efficient and interpretable, they often face significant challenges when applied to complex, noisy, or variable medical images. The central focus of this review is the transformative impact of deep learning on medical image segmentation. We delve into prominent deep learning architectures such as Convolutional Neural Networks (CNNs), Fully Convolutional Networks (FCNs), U-Net, Recurrent Neural Networks (RNNs), Adversarial Networks (GANs), and Autoencoders (AEs). Each architecture is analyzed in terms of its structural foundation and specific application to medical image segmentation, illustrating how these models have enhanced segmentation accuracy across various clinical contexts. Finally, the review examines the integration of deep learning with traditional segmentation methods, addressing the limitations of both approaches. These hybrid strategies offer improved segmentation performance, particularly in challenging scenarios involving weak edges, noise, or inconsistent intensities. By synthesizing recent advancements, this review provides a detailed resource for researchers and practitioners, offering valuable insights into the current landscape and future directions of medical image segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助荆轲刺秦王采纳,获得10
刚刚
Orange应助钱砖家采纳,获得10
刚刚
钟琪发布了新的文献求助50
1秒前
jenningseastera应助ppplok采纳,获得10
1秒前
2秒前
大旭完成签到,获得积分20
2秒前
无心的蓝发布了新的文献求助10
3秒前
科研通AI5应助langlang采纳,获得20
4秒前
4秒前
CodeCraft应助你终硕采纳,获得10
4秒前
4秒前
7秒前
彭于晏应助S1mple采纳,获得10
8秒前
传奇3应助零点零壹采纳,获得10
9秒前
yecheng发布了新的文献求助10
10秒前
一一应助punchline采纳,获得10
11秒前
zhouyu完成签到 ,获得积分10
12秒前
科研通AI5应助谢佳冀采纳,获得10
12秒前
lry发布了新的文献求助10
13秒前
14秒前
科研通AI5应助科研小白采纳,获得10
14秒前
jia应助斯文黎云采纳,获得10
15秒前
微风418完成签到,获得积分10
17秒前
18秒前
19秒前
19秒前
tudou0210发布了新的文献求助10
19秒前
浮生发布了新的文献求助10
20秒前
豪厉害完成签到,获得积分10
20秒前
20秒前
20秒前
卡卡完成签到 ,获得积分10
21秒前
科研通AI5应助大意的大象采纳,获得10
22秒前
23秒前
小小怪发布了新的文献求助10
23秒前
圈哥完成签到 ,获得积分10
23秒前
Zzoe_S完成签到,获得积分10
23秒前
1234567xjy发布了新的文献求助10
24秒前
钱砖家发布了新的文献求助10
24秒前
24秒前
高分求助中
Mass producing individuality 600
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826041
求助须知:如何正确求助?哪些是违规求助? 3368384
关于积分的说明 10450556
捐赠科研通 3087890
什么是DOI,文献DOI怎么找? 1698821
邀请新用户注册赠送积分活动 817155
科研通“疑难数据库(出版商)”最低求助积分说明 770065