亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep transfer learning in machinery remaining useful life prediction: A systematic review

计算机科学 学习迁移 人工智能 传输(计算) 并行计算
作者
Gaige Chen,Xianguang Kong,Han Cheng,Shengkang Yang,Xianzhi Wang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 012005-012005
标识
DOI:10.1088/1361-6501/ad8940
摘要

Abstract As a novel paradigm in machine learning, deep transfer learning (DTL) can harness the strengths of deep learning for feature representation, while also capitalizing on the advantages of transfer learning for knowledge transfer. Hence, DTL can effectively enhance the robustness and applicability of the data-driven remaining useful life (RUL) prediction methods, and has garnered extensive development and research attention in machinery RUL prediction. Although there are numerous systematic review articles published on the topic of the DTL-based approaches, a comprehensive overview of the application of DTL in the RUL prediction for different mechanical equipment has yet to be systematically conducted. Therefore, it is imperative to further review the pertinent literature on DTL-based approaches. This will facilitate researchers in comprehending the latest technological advancements and devising efficient solutions to address the cross-domain RUL prediction challenge. In this review, a brief overview of the theoretical background of DTL and its application in RUL prediction tasks are provided at first. Then, a detailed discussion of the primary DTL methods and their recent advancements in cross-domain RUL prediction is presented. Next, the practical application of the current research is discussed in relation to the research object and its open-source data. More importantly, several challenges and further trend are further presented to conclude this paper in the end. We have reason to hope this work can offer convenience and inspiration to researchers seeking to advance in the field of RUL prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
1秒前
学术达人应助清新的初雪采纳,获得10
4秒前
jyy应助清新的初雪采纳,获得30
4秒前
学术laji完成签到 ,获得积分10
31秒前
想好好搞事业完成签到,获得积分10
31秒前
42完成签到,获得积分10
38秒前
垚祎完成签到 ,获得积分10
45秒前
吴瑞聪发布了新的文献求助20
59秒前
手打鱼丸完成签到 ,获得积分10
1分钟前
1分钟前
Agoni发布了新的文献求助10
1分钟前
S僊应助GD采纳,获得10
1分钟前
香蕉子骞完成签到 ,获得积分10
1分钟前
格物完成签到,获得积分20
1分钟前
1分钟前
CipherSage应助yly采纳,获得30
1分钟前
1分钟前
大气的枫发布了新的文献求助10
1分钟前
1分钟前
咕饼发布了新的文献求助10
1分钟前
情怀应助kinya采纳,获得10
1分钟前
chowjb完成签到,获得积分10
1分钟前
斯文败类应助科研通管家采纳,获得10
2分钟前
aDou完成签到 ,获得积分10
2分钟前
LYSM应助GD采纳,获得10
2分钟前
2分钟前
Hiraeth完成签到 ,获得积分10
2分钟前
jyy完成签到,获得积分10
2分钟前
LYSM应助GD采纳,获得10
2分钟前
2分钟前
君寻完成签到 ,获得积分10
2分钟前
廖英健完成签到 ,获得积分10
2分钟前
2分钟前
looklei发布了新的文献求助10
2分钟前
一早发布了新的文献求助10
2分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3937743
求助须知:如何正确求助?哪些是违规求助? 3483193
关于积分的说明 11022491
捐赠科研通 3213203
什么是DOI,文献DOI怎么找? 1776034
邀请新用户注册赠送积分活动 862231
科研通“疑难数据库(出版商)”最低求助积分说明 798341