An Optimal Design of Aircraft Hybrid Powertrain Based on a Coupled Method

动力传动系统 汽车工程 计算机科学 控制工程 工程类 扭矩 物理 热力学
作者
Xuankai Qiang,Yuping Qian,Weifeng Li,Hongsheng Jiang,Weilin Zhuge,Yangjun Zhang
标识
DOI:10.1115/gt2024-127050
摘要

Abstract Hybrid aircraft can better meet the future needs of green aviation. The range and payload of battery electric aircraft are limited by the low energy density of the battery. Gas turbine hybrid systems can reduce the battery weight and increase the range and payload. In the engineering design aspect, how to select the optimal gas turbine power at design point and determine suitable off-design output power characteristics at different flight phases based on a specific mission profile is a worthy research topic. This paper presents a coupled optimization method for hybrid powertrain. Firstly, a component model of the gas turbine generator system and a battery model based on test data are established. Secondly, A design point power optimization method based on the bisection method is proposed. Further, an off-design output power optimization method based on the particle swarm optimization algorithm is also established. Based on the maximum and minimum output power capability of the gas turbine, a general table of numerical results of the non-linear equations is generated to accelerate the calculation of the off-design points based on the flight mission. Finally, based on the mission profile of NASA-X57, this paper designs the corresponding hybrid power system and compares its performance with the battery electric system, and the results show that the aircraft with optimized hybrid powertrain could increase the efficient payload (people and cargo) by 25%, the specific transportation cost (RMB/kg/km) is increased by 19%. The method proposed in this paper could provide a fast optimal design and performance evaluation of the hybrid powertrain based on a certain flight mission profile, which could provide the aircraft and powertrain manufacturers an efficient design tool.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助诚心孤菱采纳,获得10
1秒前
1秒前
Fred_Whu完成签到,获得积分10
1秒前
科yan完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
打打应助Terry采纳,获得20
2秒前
XUEWENQIN发布了新的文献求助10
3秒前
Lucas应助大力的黑夜采纳,获得10
3秒前
uwasa完成签到,获得积分10
3秒前
ying发布了新的文献求助10
3秒前
4秒前
苹果不平发布了新的文献求助10
4秒前
学术学习发布了新的文献求助10
4秒前
科研通AI5应助lucky采纳,获得10
4秒前
果实发布了新的文献求助10
4秒前
乐乐应助xuandandan采纳,获得10
4秒前
5秒前
稳稳完成签到,获得积分10
5秒前
6秒前
科研通AI5应助追寻冬萱采纳,获得20
6秒前
Fred_Whu发布了新的文献求助10
6秒前
7秒前
xxl947发布了新的文献求助10
7秒前
7秒前
小蘑菇应助YUMI采纳,获得10
7秒前
小羊发布了新的文献求助10
7秒前
7秒前
111发布了新的文献求助10
7秒前
小姚完成签到,获得积分20
8秒前
8秒前
童童关注了科研通微信公众号
8秒前
8秒前
9秒前
科研通AI6应助Ruir采纳,获得10
9秒前
Epiphany完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5098150
求助须知:如何正确求助?哪些是违规求助? 4310384
关于积分的说明 13430331
捐赠科研通 4137812
什么是DOI,文献DOI怎么找? 2266899
邀请新用户注册赠送积分活动 1270029
关于科研通互助平台的介绍 1206256