HAIR: Hypernetworks-based All-in-One Image Restoration

图像(数学) 图像复原 计算机科学 人工智能 图像处理
作者
Jin Xin Cao,Yi Cao,Li Pang,Deyu Meng,Xiangyong Cao
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2408.08091
摘要

Image restoration aims to recover a high-quality clean image from its degraded version. Recent progress in image restoration has demonstrated the effectiveness of All-in-One image restoration models in addressing various degradations simultaneously. However, these existing methods typically utilize the same parameters to tackle images with different degradation types, thus forcing the model to balance the performance between different tasks and limiting its performance on each task. To alleviate this issue, we propose HAIR, a \textbf{H}ypernetworks-based \textbf{A}ll-in-One \textbf{I}mage \textbf{R}estoration method that dynamically generates parameters based on input images. Specifically, HAIR consists of two main components, i.e., Classifier and Hyper Selecting Net (HSN). The Classifier is a simple image classification network used to generate a Global Information Vector (GIV) that contains the degradation information of the input image, and the HSN is a simple fully-connected neural network that receives the GIV and outputs parameters for the corresponding modules. Extensive experiments demonstrate that HAIR can significantly improve the performance of existing image restoration models in a plug-and-play manner, both in single-task and all-in-one settings. Notably, our innovative model, Res-HAIR, which integrates HAIR into the well-known Restormer, can obtain superior or comparable performance compared with current state-of-the-art methods. Moreover, we theoretically demonstrate that our proposed HAIR requires fewer parameters in contrast to the prevalent All-in-One methodologies. The code is available at \textcolor{blue}{\href{https://github.com/toummHus/HAIR}{https://github.com/toummHus/HAIR}.}
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大鸭梨完成签到,获得积分10
刚刚
小蘑菇应助芜湖采纳,获得10
1秒前
all发布了新的文献求助10
1秒前
包容的剑完成签到 ,获得积分10
1秒前
2秒前
长尾巴的人类完成签到,获得积分20
2秒前
nulinuli完成签到 ,获得积分10
3秒前
coolkid应助尔蓝红颜采纳,获得10
4秒前
迷人的冰蓝完成签到,获得积分10
4秒前
快乐滑板发布了新的文献求助10
5秒前
sujustin333完成签到,获得积分10
5秒前
chyvayne完成签到,获得积分20
5秒前
6秒前
6秒前
yyyyyyy111发布了新的文献求助10
7秒前
flysky120完成签到,获得积分10
7秒前
8秒前
selinann完成签到,获得积分10
9秒前
9秒前
玄辰应助要多喝水采纳,获得10
10秒前
10秒前
10秒前
11秒前
hjyylab应助keyanbaby采纳,获得10
11秒前
11秒前
月璃发布了新的文献求助10
11秒前
Lone完成签到,获得积分10
12秒前
田乐天发布了新的文献求助10
12秒前
研友_Z33EGZ完成签到,获得积分10
13秒前
13秒前
14秒前
若狂完成签到,获得积分10
14秒前
呋喃完成签到,获得积分10
15秒前
yang杨完成签到,获得积分10
15秒前
likinwei发布了新的文献求助10
15秒前
BU发布了新的文献求助10
15秒前
星期日不上发条完成签到,获得积分10
15秒前
ramu发布了新的文献求助10
16秒前
16秒前
和谐的火龙果完成签到,获得积分10
16秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841290
求助须知:如何正确求助?哪些是违规求助? 3383379
关于积分的说明 10529293
捐赠科研通 3103468
什么是DOI,文献DOI怎么找? 1709269
邀请新用户注册赠送积分活动 823044
科研通“疑难数据库(出版商)”最低求助积分说明 773769