队列
医学
比例危险模型
胶质瘤
H&E染色
肿瘤科
生存分析
内科学
总体生存率
病理
免疫组织化学
癌症研究
作者
Ruchika Verma,Tyler Alban,Prerana Bangalore Parthasarathy,Mojgan Mokhtari,Paula Toro,Mark L. Cohen,Justin D. Lathia,Manmeet S. Ahluwalia,Pallavi Tiwari
出处
期刊:Science Advances
[American Association for the Advancement of Science (AAAS)]
日期:2024-08-23
卷期号:10 (34): eadi0302-eadi0302
被引量:7
标识
DOI:10.1126/sciadv.adi0302
摘要
High-grade glioma (HGG) is an aggressive brain tumor. Sex is an important factor that differentially affects survival outcomes in HGG. We used an end-to-end deep learning approach on hematoxylin and eosin (H&E) scans to (i) identify sex-specific histopathological attributes of the tumor microenvironment (TME), and (ii) create sex-specific risk profiles to prognosticate overall survival. Surgically resected H&E-stained tissue slides were analyzed in a two-stage approach using ResNet18 deep learning models, first, to segment the viable tumor regions and second, to build sex-specific prognostic models for prediction of overall survival. Our mResNet-Cox model yielded C-index (0.696, 0.736, 0.731, and 0.729) for the female cohort and C-index (0.729, 0.738, 0.724, and 0.696) for the male cohort across training and three independent validation cohorts, respectively. End-to-end deep learning approaches using routine H&E-stained slides, trained separately on male and female patients with HGG, may allow for identifying sex-specific histopathological attributes of the TME associated with survival and, ultimately, build patient-centric prognostic risk assessment models.
科研通智能强力驱动
Strongly Powered by AbleSci AI