Lipidomics-based deep learning algorithms can enhance prediction of obstructive coronary artery disease

医学 冠状动脉疾病 脂类学 心脏病学 内科学 算法 人工智能 生物信息学 计算机科学 生物
作者
Efstratios Karagiannidis,Αndreas S. Papazoglou,Thomai Mouskeftara,Olga Deda,Theodoros Liapikos,Emmanuel Panteris,Αναστάσιος Κάρτας,Georgios Sianos,E Gika
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:45 (Supplement_1)
标识
DOI:10.1093/eurheartj/ehae666.3688
摘要

Abstract Background Lipidomics emerge as a promising research field with the potential to help in personalized risk stratification and also improve our understanding on the functional role of individual lipid species in the metabolic perturbations occurring in coronary artery disease (CAD). The existing technological challenges to detect diverse yet structurally similar lipids and their isomers, as well as the need for novel statistical and computational tools to handle the high-dimensional lipidome may be responsible for the reduced clinical translation of the very first lipidomics research outcomes. Methods To that end, this post-hoc analysis of the prospective CorLipid trial aimed to investigate the predictive capability of a lipidomics panel for obstructive CAD risk through an extreme gradient boosting (XGBoost) machine learning (ML) approach. The lipid profiles of 146 individuals with suspected CAD were investigated through liquid chromatography-mass spectrometry. Fasting blood samples were drawn prior to invasive coronary angiography execution. Obstructive CAD was defined as SYNTAX Score (SS) >0 compared to non-obstructive CAD (SS=0). Results Study participants (75.3% male, mean age: 61 ±10.5 years old) were divided into two categories based on the existence of obstructive CAD (54.8% with SS>0 and 45.2% with SS=0). In total, 517 lipid species were identified, from which 290 lipid species were finally quantified in participants’ serum [glycerophospholipids (52.1%), glycerolipids (28.6%) and sphingolipids (19.3%)]. The levels of glycerophospholipid, sphingolipid and glycerolipid classes were significantly different in patients with obstructive CAD. Finally, a ML XGBoost algorithm identified a panel of 17 serum biomarkers (5 sphingolipids, 7 glycerophospholipids, triacylglycerols, galectin-3, glucose, LDL and LDH) as totally sensitive (100% sensitivity, 62.1% specificity and 100% negative predictive value) for the prediction of obstructive CAD. Conclusions These findings provide molecular insights into the role of dysregulated lipid metabolism in the development and progression of CAD while validating the existing body of evidence from similar research studies. Further (ML-based) investigation of lipid metabolism could hold promises for novel therapeutic strategies and improvement of the existing risk stratification schemes.Lipidomics panel importance
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大胆的琳完成签到 ,获得积分10
2秒前
一枚小豆完成签到,获得积分10
4秒前
ZH完成签到 ,获得积分10
5秒前
一只滦完成签到,获得积分10
9秒前
9秒前
刘洋完成签到,获得积分10
9秒前
AJJACKY完成签到,获得积分10
10秒前
15秒前
FashionBoy应助青衫采纳,获得10
16秒前
刘帅帅完成签到,获得积分10
16秒前
情怀应助jmy1995采纳,获得10
19秒前
dasfdufos发布了新的文献求助10
20秒前
Yi完成签到,获得积分20
21秒前
学术通zzz发布了新的文献求助10
21秒前
26秒前
漂亮的盼波完成签到 ,获得积分10
27秒前
30秒前
安静严青完成签到,获得积分10
31秒前
jmy1995完成签到,获得积分10
31秒前
小小郭完成签到 ,获得积分10
31秒前
烟花应助CHENXIN532采纳,获得10
32秒前
34秒前
jmy1995发布了新的文献求助10
34秒前
I1waml完成签到 ,获得积分10
36秒前
41秒前
dasfdufos完成签到,获得积分10
42秒前
45秒前
yu发布了新的文献求助10
47秒前
47秒前
48秒前
49秒前
ct551144发布了新的文献求助10
50秒前
脑洞疼应助溫蒂采纳,获得10
50秒前
Alivelean发布了新的文献求助10
52秒前
53秒前
搞怪故事发布了新的文献求助10
55秒前
别让我误会完成签到 ,获得积分10
55秒前
ding应助霸气的梦露采纳,获得10
58秒前
南方周末发布了新的文献求助10
59秒前
Tohka完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777918
求助须知:如何正确求助?哪些是违规求助? 3323510
关于积分的说明 10214551
捐赠科研通 3038674
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798207
科研通“疑难数据库(出版商)”最低求助积分说明 758315