Mechanical behavior and failure mechanism of multilayer graphene oxides with various oxygen contents and functional types: A ReaxFF molecular dynamics simulation

雷亚克夫 分子动力学 石墨烯 材料科学 化学物理 氧气 机制(生物学) 动力学(音乐) 纳米技术 氧化物 密度泛函理论 化学工程 计算化学 化学 有机化学 冶金 物理 量子力学 声学 原子间势 工程类
作者
Yushan Bu,Kejiang Li,Feng Guo,Liang Zeng,Jianliang Zhang
出处
期刊:Applied Surface Science [Elsevier]
卷期号:606: 154920-154920 被引量:5
标识
DOI:10.1016/j.apsusc.2022.154920
摘要

• Graphene oxide mechanical property optimization method. • Mechanical failure mechanism and fracture process of graphene oxide. • Defect growth mechanism of graphene oxide stretching process. • Effect of internal and external factors on the mechanical properties of GO. • Effect of functional groups on the mechanical properties of GO. An in-depth understanding about the failure mechanism of graphene oxide and its relationship with structure and temperature is essentially important to improve the mechanical properties of graphene oxides. In this work, a series of comparison groups have been established to investigate the effects of oxygen-containing functional group density, the number of layers, temperature, and hydroxyl to epoxy group ratio on the mechanical properties of monolayer and multilayer graphene oxides through ReaxFF molecular dynamics simulations. It is demonstrated that the position of functional group distribution plays a decisive role in the mechanical properties of graphene oxide. Meanwhile, the active thermal motion of atoms at high temperatures leads to a more fracture-prone structure, but the multilayer graphene oxide is less sensitive to temperature compared to monolayer graphene oxide. In addition, the structure with more hydroxyl groups has better mechanical properties because the distortion energy of the carbon skeleton caused by hydrogen groups is much smaller than that of epoxy groups. This study provides directions and possibilities for the optimization of the mechanical properties of graphene oxide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
刚刚
刚刚
刚刚
刚刚
hwaeb完成签到 ,获得积分10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
李健应助一自文又欠采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
Ava应助韦世德采纳,获得10
3秒前
3秒前
3秒前
蒋玲发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
高分求助中
请在求助之前详细阅读求助说明!!!! 20000
The Three Stars Each: The Astrolabes and Related Texts 900
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
Multifunctional Agriculture, A New Paradigm for European Agriculture and Rural Development 600
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
A radiographic standard of reference for the growing knee 400
Glossary of Geology 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2475495
求助须知:如何正确求助?哪些是违规求助? 2140051
关于积分的说明 5453866
捐赠科研通 1863598
什么是DOI,文献DOI怎么找? 926434
版权声明 562846
科研通“疑难数据库(出版商)”最低求助积分说明 495589