Medical record data-enabled machine learning can enhance prediction of left atrial appendage thrombosis in nonvalvular atrial fibrillation

心房颤动 附属物 内科学 血栓形成 医学 心耳 心脏病学 解剖 窦性心律
作者
Yue Zhao,Liya Cao,Yingxin Zhao,Fei Wang,Lin-Li Xie,Haiyan Xing,Qian Wang
出处
期刊:Thrombosis Research [Elsevier BV]
卷期号:223: 174-183 被引量:3
标识
DOI:10.1016/j.thromres.2023.01.001
摘要

As a major complication of non-valvular atrial fibrillation (NVAF), left atrial appendage (LAA) thrombosis is associated with cerebral ischemic strokes, as well as high morbidity. Due to insufficient incorporation of risk factors, most current scoring methods are limited to the analysis of relationships between clinical characteristics and LAA thrombosis rather than detecting potential risk. Therefore, this study proposes a clinical data-driven machine learning method to predict LAA thrombosis of NVAF.Patients with NVAF from January 2014 to June 2022 were enrolled from Southwest Hospital. We selected 40 variables for analysis, including demographic data, medical history records, laboratory results, and the structure of LAA. Three machine learning algorithms were adopted to construct classifiers for the prediction of LAA thrombosis risk. The most important variables related to LAA thrombosis and their influences were recognized by SHapley Addictive exPlanations method. In addition, we compared our model with CHADS2 and CHADS2-VASc scoring methods.A total of 713 participants were recruited, including 127 patients with LAA thrombosis and 586 patients with no obvious thrombosis. The consensus models based on Random Forest and eXtreme Gradient Boosting LAA thrombosis prediction (RXTP) achieved the best accuracy of 0.865, significantly outperforming CHADS2 score and CHA2DS2-VASc score (0.757 and 0.754, respectively). The SHAP results showed that B-type natriuretic peptide, left atrial appendage width, C-reactive protein, Fibrinogen and estimated glomerular filtration rate are closely related to the risk of LAA thrombosis in nonvalvular atrial fibrillation.The RXTP-NVAF model is the most effective model with the greatest ROC value and recall rate. The summarized risk factors obtained from SHAP enable the optimization of the treatment strategy, thereby preventing thromboembolism events and the occurrence of cardiogenic ischemic stroke.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
IU冰冰完成签到 ,获得积分10
1秒前
Orange应助JUDY采纳,获得10
3秒前
Xia发布了新的文献求助10
3秒前
zx完成签到,获得积分10
4秒前
4秒前
Hello发布了新的文献求助10
5秒前
5秒前
5秒前
qy发布了新的文献求助30
5秒前
完美世界应助王思文采纳,获得10
5秒前
9秒前
小青椒应助cloud采纳,获得30
9秒前
hsn完成签到,获得积分10
11秒前
王葆蕾关注了科研通微信公众号
12秒前
粉红切开黑完成签到,获得积分20
14秒前
生动安波完成签到 ,获得积分10
15秒前
苗笑卉发布了新的文献求助10
16秒前
屁王完成签到,获得积分10
17秒前
小蘑菇应助芭娜55采纳,获得10
17秒前
18秒前
彭于晏应助李木槿采纳,获得10
19秒前
JamesPei应助curryww采纳,获得10
19秒前
JK发布了新的文献求助10
19秒前
秋梨陈皮汤完成签到,获得积分10
20秒前
21秒前
22秒前
脑洞疼应助敏感的安寒采纳,获得10
23秒前
23秒前
24秒前
事上炼应助苗笑卉采纳,获得10
24秒前
坚强的依秋完成签到,获得积分10
25秒前
王思文发布了新的文献求助10
25秒前
果果发布了新的文献求助10
27秒前
巴啦啦发布了新的文献求助10
28秒前
28秒前
Ava应助小杭76采纳,获得10
29秒前
30秒前
我是老大应助赵亮采纳,获得10
30秒前
31秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
National standards & grade-level outcomes for K-12 physical education 400
Vertebrate Palaeontology, 5th Edition 210
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4819561
求助须知:如何正确求助?哪些是违规求助? 4128431
关于积分的说明 12776448
捐赠科研通 3867973
什么是DOI,文献DOI怎么找? 2128515
邀请新用户注册赠送积分活动 1149284
关于科研通互助平台的介绍 1045084