Medical record data-enabled machine learning can enhance prediction of left atrial appendage thrombosis in nonvalvular atrial fibrillation

心房颤动 附属物 内科学 血栓形成 医学 心耳 心脏病学 解剖 窦性心律
作者
Yue Zhao,Liya Cao,Yingxin Zhao,Fei Wang,Lin-Li Xie,Haiyan Xing,Qian Wang
出处
期刊:Thrombosis Research [Elsevier BV]
卷期号:223: 174-183 被引量:3
标识
DOI:10.1016/j.thromres.2023.01.001
摘要

As a major complication of non-valvular atrial fibrillation (NVAF), left atrial appendage (LAA) thrombosis is associated with cerebral ischemic strokes, as well as high morbidity. Due to insufficient incorporation of risk factors, most current scoring methods are limited to the analysis of relationships between clinical characteristics and LAA thrombosis rather than detecting potential risk. Therefore, this study proposes a clinical data-driven machine learning method to predict LAA thrombosis of NVAF.Patients with NVAF from January 2014 to June 2022 were enrolled from Southwest Hospital. We selected 40 variables for analysis, including demographic data, medical history records, laboratory results, and the structure of LAA. Three machine learning algorithms were adopted to construct classifiers for the prediction of LAA thrombosis risk. The most important variables related to LAA thrombosis and their influences were recognized by SHapley Addictive exPlanations method. In addition, we compared our model with CHADS2 and CHADS2-VASc scoring methods.A total of 713 participants were recruited, including 127 patients with LAA thrombosis and 586 patients with no obvious thrombosis. The consensus models based on Random Forest and eXtreme Gradient Boosting LAA thrombosis prediction (RXTP) achieved the best accuracy of 0.865, significantly outperforming CHADS2 score and CHA2DS2-VASc score (0.757 and 0.754, respectively). The SHAP results showed that B-type natriuretic peptide, left atrial appendage width, C-reactive protein, Fibrinogen and estimated glomerular filtration rate are closely related to the risk of LAA thrombosis in nonvalvular atrial fibrillation.The RXTP-NVAF model is the most effective model with the greatest ROC value and recall rate. The summarized risk factors obtained from SHAP enable the optimization of the treatment strategy, thereby preventing thromboembolism events and the occurrence of cardiogenic ischemic stroke.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lucy发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
3秒前
斯文静竹发布了新的文献求助10
5秒前
共享精神应助Nicole采纳,获得10
5秒前
我思故我在完成签到,获得积分0
5秒前
5秒前
6秒前
shen完成签到,获得积分10
6秒前
keyantong发布了新的文献求助10
6秒前
余俊辉完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
天天快乐应助李李李采纳,获得10
11秒前
qq完成签到 ,获得积分10
11秒前
希望天下0贩的0应助nannan采纳,获得10
11秒前
14秒前
ZLWF发布了新的文献求助10
14秒前
可爱的函函应助keyantong采纳,获得10
14秒前
Gru发布了新的文献求助10
14秒前
科研通AI5应助淡然扬采纳,获得10
14秒前
科研通AI5应助斯文静竹采纳,获得10
16秒前
16秒前
陈一一完成签到 ,获得积分10
17秒前
17秒前
20秒前
砂砾发布了新的文献求助10
20秒前
keyantong完成签到,获得积分10
21秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
24秒前
赘婿应助wyc采纳,获得10
24秒前
乐乐发布了新的文献求助30
24秒前
在水一方应助斯文静竹采纳,获得10
25秒前
25秒前
28秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4212780
求助须知:如何正确求助?哪些是违规求助? 3747005
关于积分的说明 11789485
捐赠科研通 3414563
什么是DOI,文献DOI怎么找? 1873739
邀请新用户注册赠送积分活动 928108
科研通“疑难数据库(出版商)”最低求助积分说明 837442