材料科学
石墨烯
纳米技术
成核
去湿
传热
纳米流体
量子点
纳米结构
基质(水族馆)
光电子学
薄膜
纳米颗粒
热力学
海洋学
物理
地质学
作者
B. Chu,Benwei Fu,Lining Dong,Weizheng Cheng,Ruitong Wang,Feiyu Zheng,Cheng Fang,Peng Tao,Chengyi Song,Wen Shang,Tao Deng
出处
期刊:Nano Letters
[American Chemical Society]
日期:2022-12-21
卷期号:23 (1): 259-266
被引量:10
标识
DOI:10.1021/acs.nanolett.2c04254
摘要
Films with micro/nanostructures that show high wicking performance are promising in water desalination, atmospheric water harvesting, and thermal energy management systems. Here, we use a facile bubble-induced self-assembly method to directly generate films with a nanoengineered crack-like surface on the substrate during bubble growth when self-dispersible graphene quantum dot (GQD) nanofluid is used as the working medium. The crack-like micro/nanostructure, which is generated due to the thermal stress, enables the GQD film to not only have superior capillary wicking performance but also provide many additional nucleation sites. The film demonstrates enhanced phase change-based heat transfer performance, with a simultaneous enhancement of the critical heat flux and heat transfer coefficient up to 169% and 135% over a smooth substrate, respectively. Additionally, the GQD film with high stability enables a performance improvement in the concentration ratio and electrical efficiency of concentrated photovoltaics in an analytical study, which is promising for high-power thermal energy management applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI