PPI-Miner: A Structure and Sequence Motif Co-Driven Protein–Protein Interaction Mining and Modeling Computational Method

计算生物学 计算机科学 主题(音乐) 序列母题 结构母题 数据挖掘 生物 遗传学 DNA 生物化学 声学 物理
作者
Lin Wang,Fenglei Li,Xinyue Ma,Yong Cang,Fang Bai
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (23): 6160-6171 被引量:8
标识
DOI:10.1021/acs.jcim.2c01033
摘要

Protein-protein interactions (PPIs) play important roles in biological processes of life, and predicting PPIs becomes a critical scientific issue of concern. Most PPIs occur through small domains or motifs (fragments), which are challenging and laborious to map by standard biochemical approaches because they generally require the cloning of several truncation mutants. Here, we present a computational method, named as PPI-Miner, to fish potential protein interacting partners utilizing protein motifs as queries. In brief, this work first developed a motif-matching algorithm designed to identify the proteins that contain sequential or structural similar motifs with the given query motif. Being aligned to the query motif, the binding mode of the discovered motif and its receptor protein will be initially determined to be used to build PPI complexes accordingly. Eventually, a PPI complex structure could be built and optimized with a designed automatic protocol. Besides discovering PPIs, PPI-Miner can also be applied to other areas, i.e., the rational design of molecular glues and protein vaccines. In this work, PPI-Miner was employed to mine the potential cereblon (CRBN) substrates from human proteome. As a result, 1,739 candidates were predicted, and 16 of them have been experimentally validated in previous studies. The source code of PPI-Miner can be obtained from the GitHub repository (https://github.com/Wang-Lin-boop/PPI-Miner), the webserver is freely available for users (https://bailab.siais.shanghaitech.edu.cn/services/ppi-miner), and the database of predicted CRBN substrates is accessible at https://bailab.siais.shanghaitech.edu.cn/services/crbn-subslib.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LJHUA完成签到,获得积分10
1秒前
3秒前
正直的松鼠完成签到 ,获得积分10
7秒前
zcbb完成签到,获得积分10
10秒前
12秒前
聂青枫完成签到,获得积分10
14秒前
nater3ver完成签到,获得积分10
14秒前
Hiram完成签到,获得积分10
15秒前
16秒前
zcbb发布了新的文献求助10
19秒前
nater2ver完成签到,获得积分10
25秒前
书生也是小郎中完成签到 ,获得积分10
26秒前
高高代珊完成签到 ,获得积分10
27秒前
31秒前
32秒前
xmjxmj217完成签到 ,获得积分10
34秒前
wangwenzhe发布了新的文献求助10
35秒前
wenhuanwenxian完成签到 ,获得积分10
36秒前
nater1ver完成签到,获得积分10
38秒前
丘比特应助wangwenzhe采纳,获得10
44秒前
dong完成签到 ,获得积分10
46秒前
47秒前
Lucas应助ju龙哥采纳,获得10
48秒前
55秒前
56秒前
77完成签到 ,获得积分10
57秒前
小学生学免疫完成签到 ,获得积分10
1分钟前
ju龙哥发布了新的文献求助10
1分钟前
杨抠脚完成签到,获得积分10
1分钟前
舒心的芝麻完成签到 ,获得积分10
1分钟前
关中人完成签到,获得积分10
1分钟前
ju龙哥完成签到,获得积分10
1分钟前
panpanliumin完成签到,获得积分0
1分钟前
乐观的星月完成签到 ,获得积分10
1分钟前
1分钟前
余味应助科研通管家采纳,获得10
1分钟前
余味应助科研通管家采纳,获得10
1分钟前
余味应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782730
求助须知:如何正确求助?哪些是违规求助? 3328104
关于积分的说明 10234493
捐赠科研通 3043122
什么是DOI,文献DOI怎么找? 1670450
邀请新用户注册赠送积分活动 799702
科研通“疑难数据库(出版商)”最低求助积分说明 758994