Real-Time Ocean Small Target Detection Based on Improved YOLOX Network

计算机科学 特征提取 人工神经网络 特征(语言学) 过程(计算) 领域(数学) 人工智能 模式识别(心理学) 数学 语言学 操作系统 哲学 纯数学
作者
Puhui Qu,En Cheng,Keyu Chen
标识
DOI:10.1109/oceans47191.2022.9977103
摘要

In recent years, target recognition and detection technology, which is an important research direction in the field of computer vision, is widely used in human life. The technology has been relatively mature for the recognition of medium and large targets such as people and objects on land. However, due to some conditions, it is relatively rare in the marine field. The main reason for the analysis is that the ocean environment is complex, and many related factors, such as waves and light, can affect it. At the same time, the small targets are usually vague with little information. As a result, the feature expression ability is weak, and very few effective features can be extracted in the process of feature extraction. This problem has aroused the great attention. Based on the existing YOLOX neural network structure, this paper proposes a new neural network structure CBAM-YOLOX. The experiment results show that the AP value of CBAM-YOLOX is 2.94% higher than that of YOLOX, which effectively improves the low positioning accuracy and missing detection of ocean small targets. That has great significance to the application in the ocean field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
华仔应助火柴采纳,获得10
1秒前
1秒前
充电宝应助漆玖采纳,获得30
1秒前
Ori驳回了Owen应助
1秒前
练习者发布了新的文献求助10
2秒前
所所应助甜心采纳,获得10
2秒前
动漫大师发布了新的文献求助10
2秒前
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
非而者厚应助科研通管家采纳,获得10
3秒前
一颗柚子发布了新的文献求助10
4秒前
卡卡西应助科研通管家采纳,获得10
4秒前
非而者厚应助科研通管家采纳,获得10
4秒前
非而者厚应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
Owen应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
JamesPei应助付冀川采纳,获得10
4秒前
5秒前
共享精神应助Q123ba叭采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
5秒前
大个应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
Leo完成签到,获得积分10
5秒前
5秒前
充电宝应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
万能图书馆应助期待未来采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得30
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
非而者厚应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816802
求助须知:如何正确求助?哪些是违规求助? 3360159
关于积分的说明 10407045
捐赠科研通 3078172
什么是DOI,文献DOI怎么找? 1690613
邀请新用户注册赠送积分活动 813964
科研通“疑难数据库(出版商)”最低求助积分说明 767910