Prior Attention Network for Multi-Lesion Segmentation in Medical Images

分割 计算机科学 人工智能 卷积神经网络 模式识别(心理学) 深度学习 人工神经网络 图像分割 相似性(几何) 计算机视觉 图像(数学)
作者
Xiangyu Zhao,Peng Zhang,ST Fan,Chi Ma,Guangda Fan,Yu Sun,Youdan Feng,Guanglei Zhang
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2110.04735
摘要

The accurate segmentation of multiple types of lesions from adjacent tissues in medical images is significant in clinical practice. Convolutional neural networks (CNNs) based on the coarse-to-fine strategy have been widely used in this field. However, multi-lesion segmentation remains to be challenging due to the uncertainty in size, contrast, and high interclass similarity of tissues. In addition, the commonly adopted cascaded strategy is rather demanding in terms of hardware, which limits the potential of clinical deployment. To address the problems above,we propose a novel Prior Attention Network (PANet) that follows the coarse-to-fine strategy to perform multi-lesion segmentation in medical images. The proposed network achieves the two steps of segmentation in a single network by inserting lesion-related spatial attention mechanism in the network. Further, we also propose the intermediate supervision strategy for generating lesion-related attention to acquire the regions of interest (ROIs), which accelerates the convergence and obviously improves the segmentation performance. We have investigated the proposed segmentation framework in two applications: 2D segmentation of multiple lung infections in lung CT slices and 3D segmentation of multiple lesions in brain MRIs. Experimental results show that in both 2D and 3D segmentation tasks our proposed network achieves better performance with less computational cost compared with cascaded networks. The proposed network can be regarded as a universal solution to multi-lesion segmentation in both 2D and 3D tasks. The source code is available at: https://github.com/hsiangyuzhao/PANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
rose完成签到,获得积分10
1秒前
2秒前
刘梦瑶发布了新的文献求助10
2秒前
科研通AI5应助lokkk采纳,获得10
6秒前
内向芒果发布了新的文献求助10
6秒前
7秒前
所所应助yu采纳,获得10
7秒前
马华化完成签到,获得积分0
7秒前
koala发布了新的文献求助10
9秒前
聪明怜阳发布了新的文献求助10
12秒前
柠檬完成签到 ,获得积分10
13秒前
RLLLLLLL完成签到 ,获得积分10
13秒前
15秒前
16秒前
16秒前
NexusExplorer应助聪明怜阳采纳,获得10
18秒前
芭娜55完成签到 ,获得积分10
18秒前
19秒前
20秒前
20秒前
21秒前
平淡亦云发布了新的文献求助20
21秒前
Enid完成签到,获得积分10
22秒前
yuyu发布了新的文献求助100
23秒前
yu发布了新的文献求助10
24秒前
舒心宛亦完成签到,获得积分20
25秒前
26秒前
27秒前
27秒前
star完成签到,获得积分10
28秒前
29秒前
安详梦芝完成签到,获得积分10
29秒前
koala完成签到,获得积分10
29秒前
Yuanyuan发布了新的文献求助10
32秒前
star发布了新的文献求助10
34秒前
李爱国应助博修采纳,获得10
35秒前
在水一方应助510采纳,获得10
36秒前
小秦完成签到,获得积分10
36秒前
高分求助中
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840535
求助须知:如何正确求助?哪些是违规求助? 3382609
关于积分的说明 10525079
捐赠科研通 3102191
什么是DOI,文献DOI怎么找? 1708713
邀请新用户注册赠送积分活动 822646
科研通“疑难数据库(出版商)”最低求助积分说明 773450