Infrared and Visible Image Fusion: From Data Compatibility to Task Adaption

人工智能 计算机科学 计算机视觉 图像融合 传感器融合 融合 模式识别(心理学) 图像(数学) 哲学 语言学
作者
Jinyuan Liu,Guanyao Wu,Zhu Liu,Di Wang,Zhiying Jiang,Long Ma,Wei Zhong,Xin Fan
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-20 被引量:43
标识
DOI:10.1109/tpami.2024.3521416
摘要

Infrared-visible image fusion (IVIF) is a fundamental and critical task in the field of computer vision. Its aim is to integrate the unique characteristics of both infrared and visible spectra into a holistic representation. Since 2018, growing amount and diversity IVIF approaches step into a deep-learning era, encompassing introduced a broad spectrum of networks or loss functions for improving visual enhancement. As research deepens and practical demands grow, several intricate issues like data compatibility, perception accuracy, and efficiency cannot be ignored. Regrettably, there is a lack of recent surveys that comprehensively introduce and organize this expanding domain of knowledge. Given the current rapid development, this paper aims to fill the existing gap by providing a comprehensive survey that covers a wide array of aspects. Initially, we introduce a multi-dimensional framework to elucidate the prevalent learning-based IVIF methodologies, spanning topics from basic visual enhancement strategies to data compatibility, task adaptability, and further extensions. Subsequently, we delve into a profound analysis of these new approaches, offering a detailed lookup table to clarify their core ideas. Last but not the least, We also summarize performance comparisons quantitatively and qualitatively, covering registration, fusion and follow-up high-level tasks. Beyond delving into the technical nuances of these learning-based fusion approaches, we also explore potential future directions and open issues that warrant further exploration by the community. For additional information and a detailed data compilation, please refer to our GitHub repository: https://github.com/RollingPlain/IVIF_ZOO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
标致念之发布了新的文献求助10
刚刚
enen完成签到,获得积分10
刚刚
刚刚
小李完成签到,获得积分10
1秒前
1秒前
颖火虫2588完成签到,获得积分10
1秒前
2秒前
田様应助涵涵涵hh采纳,获得10
2秒前
大个应助zyfzyf采纳,获得10
2秒前
wangjincheng发布了新的文献求助10
2秒前
ly发布了新的文献求助10
4秒前
wang可爱额完成签到 ,获得积分10
4秒前
会发光的小灰灰完成签到,获得积分10
4秒前
4秒前
4秒前
上分完成签到,获得积分10
4秒前
5秒前
华姝发布了新的文献求助10
5秒前
吴彦祖发布了新的文献求助10
5秒前
快乐冰淇淋完成签到,获得积分20
6秒前
张培元发布了新的文献求助10
6秒前
江江完成签到,获得积分10
6秒前
zhang完成签到,获得积分10
6秒前
6秒前
一进实验室就犯困完成签到,获得积分10
6秒前
7秒前
忐忑的鬼神完成签到,获得积分10
7秒前
烟花应助JRY5678采纳,获得10
7秒前
在水一方应助清脆的绮梅采纳,获得10
8秒前
小李发布了新的文献求助10
9秒前
9秒前
9秒前
不准吃烤肉完成签到,获得积分10
10秒前
10秒前
独特导师发布了新的文献求助10
10秒前
11秒前
haitun完成签到,获得积分10
11秒前
11秒前
11秒前
cqcqcq完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
RF and Microwave Power Amplifiers 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5022700
求助须知:如何正确求助?哪些是违规求助? 4260451
关于积分的说明 13277898
捐赠科研通 4066793
什么是DOI,文献DOI怎么找? 2224343
邀请新用户注册赠送积分活动 1233238
关于科研通互助平台的介绍 1157181