Infrared and Visible Image Fusion: From Data Compatibility to Task Adaption

人工智能 计算机科学 计算机视觉 图像融合 传感器融合 融合 模式识别(心理学) 图像(数学) 哲学 语言学
作者
Jinyuan Liu,Guanyao Wu,Zhu Liu,Di Wang,Zhiying Jiang,Long Ma,Wei Zhong,Xin Fan
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-20 被引量:11
标识
DOI:10.1109/tpami.2024.3521416
摘要

Infrared-visible image fusion (IVIF) is a fundamental and critical task in the field of computer vision. Its aim is to integrate the unique characteristics of both infrared and visible spectra into a holistic representation. Since 2018, growing amount and diversity IVIF approaches step into a deep-learning era, encompassing introduced a broad spectrum of networks or loss functions for improving visual enhancement. As research deepens and practical demands grow, several intricate issues like data compatibility, perception accuracy, and efficiency cannot be ignored. Regrettably, there is a lack of recent surveys that comprehensively introduce and organize this expanding domain of knowledge. Given the current rapid development, this paper aims to fill the existing gap by providing a comprehensive survey that covers a wide array of aspects. Initially, we introduce a multi-dimensional framework to elucidate the prevalent learning-based IVIF methodologies, spanning topics from basic visual enhancement strategies to data compatibility, task adaptability, and further extensions. Subsequently, we delve into a profound analysis of these new approaches, offering a detailed lookup table to clarify their core ideas. Last but not the least, We also summarize performance comparisons quantitatively and qualitatively, covering registration, fusion and follow-up high-level tasks. Beyond delving into the technical nuances of these learning-based fusion approaches, we also explore potential future directions and open issues that warrant further exploration by the community. For additional information and a detailed data compilation, please refer to our GitHub repository: https://github.com/RollingPlain/IVIF_ZOO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
halo完成签到,获得积分10
1秒前
柠檬酸钠完成签到,获得积分10
1秒前
cocobear完成签到 ,获得积分10
3秒前
学习完成签到 ,获得积分10
6秒前
酷波er应助苗苗采纳,获得10
6秒前
Vincent完成签到,获得积分10
7秒前
科研王子完成签到,获得积分10
8秒前
8秒前
cgx关闭了cgx文献求助
10秒前
酪酪Alona完成签到,获得积分10
10秒前
ava完成签到,获得积分10
12秒前
lunar完成签到 ,获得积分10
14秒前
阿亮完成签到 ,获得积分10
14秒前
sanqian911完成签到,获得积分10
14秒前
junjie发布了新的文献求助10
15秒前
heyseere完成签到,获得积分10
16秒前
feiyang完成签到 ,获得积分10
18秒前
windsea完成签到,获得积分0
19秒前
愤怒的小鸭子完成签到 ,获得积分10
19秒前
在九月完成签到 ,获得积分10
19秒前
zhouzhou完成签到 ,获得积分10
20秒前
材1完成签到 ,获得积分10
20秒前
敏感迎丝完成签到 ,获得积分10
20秒前
清风徐来完成签到,获得积分10
21秒前
文心同学完成签到,获得积分0
21秒前
Wsyyy完成签到 ,获得积分10
22秒前
dan1029完成签到,获得积分10
23秒前
yy完成签到,获得积分10
24秒前
好好完成签到,获得积分10
25秒前
阡陌完成签到,获得积分10
26秒前
鱼豆干完成签到,获得积分10
26秒前
迷人的香菇完成签到 ,获得积分10
27秒前
zhang完成签到 ,获得积分10
27秒前
cgx关闭了cgx文献求助
29秒前
跋扈完成签到,获得积分10
31秒前
chenkj完成签到,获得积分10
31秒前
Skywalker完成签到,获得积分10
31秒前
EricSai完成签到,获得积分10
31秒前
ikun完成签到,获得积分10
31秒前
猪肉铺完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
ICDD求助cif文件 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Secrets of Successful Product Launches 300
The Rise & Fall of Classical Legal Thought 260
Encyclopedia of Renewable Energy, Sustainability and the Environment Volume 1: Sustainable Development and Bioenergy Solutions 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4344893
求助须知:如何正确求助?哪些是违规求助? 3851658
关于积分的说明 12021872
捐赠科研通 3493154
什么是DOI,文献DOI怎么找? 1916861
邀请新用户注册赠送积分活动 959817
科研通“疑难数据库(出版商)”最低求助积分说明 859916