si-PiNet: A novel stress integration method for elastoplastic models

压力(语言学) 计算机科学 材料科学 哲学 语言学
作者
Pin Zhang,Zhen‐Yu Yin,Brian Sheil
出处
期刊:Geotechnique Letters [ICE Publishing]
卷期号:15 (1): 1-22
标识
DOI:10.1680/jgele.24.00043
摘要

Elastoplastic theory is ubiquitous in engineering for modelling the mechanical behaviours of various materials such as metals and granular matter. Elastoplasticity allows computation of plastic strains and updated stresses with hardening parameters using explicit and/or implicit integration algorithms, requiring strong mathematical and domain knowledge. This study proposes a novel stress integration prior information based neural network (si-PiNet) to achieve step-change improvements in the solution of elastoplastic stress-strain responses. si-PiNet leverages a strong non-linear mapping ability in high-dimensional space to search for the correct stress under a given strain increment. The associated stress prediction is constrained by encoded prior information in the form of elastoplastic theory. To verify feasibility and generalization, si-PiNet is applied to solve three canonical elastoplastic constitutive models, namely von Mises, Mohr-Coulomb and Modified Cam-clay. The results indicate si-PiNet can accurately capture the evolution of stress and hardening of various complex constitutive models, whilst also achieving a lower sensitivity to the magnitude of strain increment compared with conventional stress integration algorithms. si-PiNet provides engineering researchers with a new generic paradigm for the computation of plastic strain and updating of stresses with potential for application to any constitutive model of interest.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NYM关闭了NYM文献求助
1秒前
2秒前
共享精神应助小张同学采纳,获得10
7秒前
ED应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
大个应助王业美少一横咯采纳,获得10
13秒前
ding应助科研通管家采纳,获得10
13秒前
徐徐徐徐完成签到,获得积分10
13秒前
大模型应助科研通管家采纳,获得10
13秒前
科目三应助科研通管家采纳,获得10
13秒前
13秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
13秒前
77关闭了77文献求助
14秒前
fire完成签到 ,获得积分10
15秒前
16秒前
17秒前
17秒前
17秒前
JamesPei应助Lin.隽采纳,获得10
18秒前
mouxq发布了新的文献求助30
18秒前
18秒前
ss完成签到,获得积分10
18秒前
苹果友桃完成签到,获得积分20
19秒前
20秒前
20秒前
21秒前
22秒前
22秒前
milk完成签到 ,获得积分10
23秒前
24秒前
李宸发布了新的文献求助10
24秒前
潘贤铖发布了新的文献求助10
24秒前
阿白完成签到 ,获得积分10
25秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3964651
求助须知:如何正确求助?哪些是违规求助? 3510169
关于积分的说明 11151848
捐赠科研通 3244291
什么是DOI,文献DOI怎么找? 1792365
邀请新用户注册赠送积分活动 873801
科研通“疑难数据库(出版商)”最低求助积分说明 803957