Detection of In Vivo-Like Cells by a Biosensor Chip Based on Metamaterials in Terahertz Regime

体内 超材料 太赫兹辐射 生物传感器 材料科学 炸薯条 胶质瘤 光电子学 细胞凋亡 纳米技术 生物医学工程 化学 计算机科学 生物 癌症研究 医学 电信 生物技术 生物化学
作者
Lulu Han,Yuchen Wang,Kanglong Chen,Hengyu Gao,Xia Kai,Qinggang Ge,Jun Yang,Wei Shi,Cunjun Ruan
出处
期刊:Biosensors [MDPI AG]
卷期号:14 (5): 230-230
标识
DOI:10.3390/bios14050230
摘要

Early diagnosis of diseases, especially cancer, is critical for effective treatment. The unique properties of terahertz technology have attracted attention in this field. However, current terahertz bio-detection methods face challenges due to differences between the test environment and the actual in vivo conditions. In this study, a novel method is proposed for detecting in vivo-like cells using a biosensor chip composed of metamaterials and a cavity. The cavity has a thickness of ~50 μm. The structure can protect cells from damage and provides a liquid environment like an in vivo state. Through simulation analysis, the metamaterials sensor exhibits a theoretical sensitivity of 0.287 THz/RIU (Refractive Index Unit) with a 50 μm thick analyte. The detection method is experimentally validated using the apoptosis of glioma cells and various cell types. The biosensor investigates the apoptosis of glioma cells under the impact of temozolomide, and the trend of the results was consistent with the Cell Counting Kit-8 method. Furthermore, at a concentration of ~5200 cells/cm2, the experimental results demonstrate that the sensor can distinguish between neurons and glioma cells with a resonance frequency difference of approximately 30 GHz. This research has significant potential for detecting glioma cells and offers an alternative approach to in vivo-like cell detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张靖发布了新的文献求助10
刚刚
1秒前
liwangdan完成签到,获得积分10
1秒前
荷月初六发布了新的文献求助20
2秒前
2秒前
ding应助勤恳青亦采纳,获得10
3秒前
Kurenai完成签到,获得积分10
4秒前
ding应助王邵梅采纳,获得10
4秒前
5秒前
passion发布了新的文献求助30
6秒前
易方完成签到,获得积分10
6秒前
笑点低代萱完成签到,获得积分10
7秒前
7秒前
田雨弘完成签到,获得积分10
8秒前
汉堡包应助littleblack采纳,获得10
8秒前
荷月初六发布了新的文献求助10
9秒前
math-naive完成签到,获得积分10
9秒前
black云发布了新的文献求助10
10秒前
10秒前
11秒前
Albert发布了新的文献求助10
11秒前
叫我富婆儿完成签到,获得积分10
11秒前
Ava应助舒心的如柏采纳,获得10
12秒前
12秒前
辛普森完成签到,获得积分10
12秒前
顺顺顺顺完成签到 ,获得积分10
12秒前
爱吃蔬菜完成签到,获得积分10
13秒前
秋秋儿完成签到,获得积分10
13秒前
wy完成签到,获得积分10
14秒前
888完成签到,获得积分10
14秒前
14秒前
火花发布了新的文献求助10
15秒前
Sharif318完成签到,获得积分10
15秒前
充电宝应助TiAmo采纳,获得10
16秒前
Emper发布了新的文献求助10
16秒前
思源应助踟蹰采纳,获得10
16秒前
16秒前
17秒前
Kurenai发布了新的文献求助100
17秒前
三岁完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468825
求助须知:如何正确求助?哪些是违规求助? 4572157
关于积分的说明 14333943
捐赠科研通 4498964
什么是DOI,文献DOI怎么找? 2464789
邀请新用户注册赠送积分活动 1453376
关于科研通互助平台的介绍 1427939