亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Refined landslide inventory and susceptibility of Weining County, China, inferred from machine learning and Sentinel‐1 InSAR analysis

山崩 干涉合成孔径雷达 地质学 地形 遥感 支持向量机 地图学 地质调查 合成孔径雷达 大地测量学 地震学 地理 人工智能 计算机科学 地球物理学
作者
Xuguo Shi,Dianqiang Chen,Jianing Wang,Pan Wang,Yunlong Wu,Shaocheng Zhang,Yi Zhang,Chen Yang,Lunche Wang
出处
期刊:Transactions in Gis [Wiley]
卷期号:28 (6): 1594-1616 被引量:7
标识
DOI:10.1111/tgis.13202
摘要

Abstract Landslides are widely distributed mountainous geological hazards that threaten economic development and people's daily lives. Interferometric synthetic aperture radar (InSAR) with comprehensive coverage and high‐precision ground displacement monitoring abilities are frequently utilized for regional‐scale active slope detection. Moreover, InSAR measurements that characterize ground dynamics are integrated with conventional topographic, hydrological, and geological landslide conditioning factors (LCFs) for landslide susceptibility mapping (LSM). Weining County in southwest China, with complex geological conditions, steep terrain, and frequent tectonic activities, is prone to catastrophic landslide failures. In this study, we refined the landslide inventory of Weining County using one ascending and one descending Sentinel‐1 dataset acquired during 2015–2021 through a small baseline subset InSAR (SBAS InSAR) analysis. We then combine the LOS measurements from both datasets using multidimensional SBAS to obtain time series two‐dimensional (2D) displacements to characterize the kinematics of active slopes. Hot spot and cluster analysis (HCA) was carried out on 2D displacement rate maps to highlight clustered deformed areas and suppress noisy signals that occurred on single pixels. Two hundred fifty‐eight landslides (including 71 active identified in this study) are used to construct 76,412 positive samples for LSM. In our study, the HCA maps, instead of the 2D displacement maps, are integrated with conventional LCFs to form an LCF_HCA set to feed support vector machine (SVM), Random Forest (RF), extreme Gradient Boosting (XGBoost) and Light Gradient‐Boosting Machine (LightGBM) models. A conventional LCF (LCF_CON) set and an integrated 2D displacement maps (LCF_2D) set have also been adapted for comparison. The performance of the tree‐based ensemble methods distinctly outperforms the SVM model. In the meantime, models' performances using the LCF_HCA set are superior to that of the other 2 LCF sets from all evaluation metrics. The ranks of HCA maps increased compared with 2D displacement maps from feature importance analysis, which might lead to the better performance of models using the LCF_HCA set. With the continuous accumulation of SAR images, ground dynamic characteristics from InSAR can offer us opportunities to understand landslide kinematics and enhance LSM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
14秒前
阔达板栗发布了新的文献求助10
19秒前
转转王转转完成签到,获得积分20
19秒前
小蘑菇应助阔达板栗采纳,获得10
24秒前
pingu完成签到,获得积分10
26秒前
44秒前
SiboN发布了新的文献求助10
50秒前
桦奕兮完成签到 ,获得积分10
56秒前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
桐桐应助舒服的觅夏采纳,获得10
2分钟前
2分钟前
2分钟前
seven发布了新的文献求助10
2分钟前
所所应助Serein采纳,获得10
2分钟前
2分钟前
Criminology34举报张才豪求助涉嫌违规
2分钟前
舒服的觅夏完成签到,获得积分10
2分钟前
lzzzzz完成签到,获得积分10
2分钟前
2分钟前
2分钟前
lzzzzz发布了新的文献求助10
2分钟前
Criminology34举报张才豪求助涉嫌违规
3分钟前
3分钟前
lyy发布了新的文献求助20
3分钟前
轻松小玉发布了新的文献求助10
3分钟前
3分钟前
wsb76完成签到 ,获得积分10
3分钟前
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5706331
求助须知:如何正确求助?哪些是违规求助? 5172037
关于积分的说明 15246809
捐赠科研通 4859876
什么是DOI,文献DOI怎么找? 2608202
邀请新用户注册赠送积分活动 1559093
关于科研通互助平台的介绍 1516866