A fast stop-flow two-dimensional liquid chromatography tandem mass spectrometry and its application in food-derived protein hydrolysates

色谱法 化学 水解物 串联质谱法 质谱法 食物蛋白 酪蛋白 食品科学 生物化学 水解
作者
Wu Li,Junhong Huang,Lin Zheng,Wanshun Liu,Liqi Fan,Baoguo Sun,Guowan Su,Jucai Xu,Mouming Zhao
出处
期刊:Food Chemistry [Elsevier]
卷期号:406: 135000-135000 被引量:11
标识
DOI:10.1016/j.foodchem.2022.135000
摘要

• A fast stop-flow 2DLC-MS was established for peptide separation and identification. • UPLC Protein BEH SEC and HSS T3 columns were found to be an appropriate pair for 2D separation. • Large sample volume but small fraction volume was suggested for 2DLC separation. • Stop-flow 2DLC-MS was proved of high potential in peptidomic analysis. Food-derived bioactive peptides have many outstanding features like high safety, easy absorption, etc. However, explorations of the peptides are suffering from the limited knowledge of sample composition and low efficiency of separation techniques. In this work, a fast stop-flow two-dimensional liquid chromatography tandem mass spectrometry (2DLC-MS) was designed and constructed in-house. For chromatographic system optimization, the effects of column pairs and fraction transfer volumes on separation performance were studied. The pair of Protein BEH SEC and HSS T3 columns was found of high orthogonality. The peak capacity detected by the optimized 2DLC reached 1165 (for corn protein hydrolysates), indicating high resolving power. Moreover, the number of peptides identified from corn, soybean and casein protein hydrolysates reached as high as 8330, 8925 and 7215, respectively, demonstrating the high potential of the system. This would help reveal the peptide composition and facilitate the research on exploring bioactive peptides from food-derived protein hydrolysates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助202583080239采纳,获得10
1秒前
小小应助开朗的夜天采纳,获得30
1秒前
任无施完成签到 ,获得积分10
1秒前
充电宝应助Mayily采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
amen完成签到 ,获得积分10
1秒前
晚风完成签到,获得积分10
2秒前
汉堡包应助双儿采纳,获得10
2秒前
隐形曼青应助怡然安萱采纳,获得10
2秒前
鳗鱼语柳发布了新的文献求助10
2秒前
英姑应助dllllll采纳,获得10
3秒前
3秒前
miemieyang发布了新的文献求助10
3秒前
Miranda完成签到,获得积分10
3秒前
一川烟叶完成签到,获得积分10
3秒前
弘卿发布了新的文献求助10
4秒前
4秒前
米大王完成签到,获得积分10
4秒前
5秒前
5秒前
lpb发布了新的文献求助10
5秒前
孙瑞完成签到,获得积分10
5秒前
5秒前
木木完成签到,获得积分10
5秒前
孟儿完成签到 ,获得积分10
5秒前
5秒前
6秒前
qwepoi完成签到,获得积分10
6秒前
7秒前
伶俐映易完成签到,获得积分20
7秒前
健忘蘑菇完成签到,获得积分10
7秒前
miracle完成签到 ,获得积分10
7秒前
刘秋伶完成签到,获得积分10
8秒前
8秒前
乐观金毛完成签到,获得积分10
8秒前
阿嫣发布了新的文献求助10
8秒前
8秒前
李胜发布了新的文献求助10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483412
求助须知:如何正确求助?哪些是违规求助? 4584111
关于积分的说明 14394937
捐赠科研通 4513842
什么是DOI,文献DOI怎么找? 2473659
邀请新用户注册赠送积分活动 1459658
关于科研通互助平台的介绍 1433118