数学
同宿轨道
人口
捕食者
分段
极限(数学)
分叉
极限环
应用数学
捕食
霍普夫分叉
控制理论(社会学)
数学分析
生态学
非线性系统
物理
经济
生物
社会学
人口学
管理
量子力学
控制(管理)
标识
DOI:10.1142/s1793524522501182
摘要
The aim of this paper is to study the dynamical behaviors of a piecewise smooth predator–prey model with predator harvesting. We consider a harvesting strategy that allows constant catches if the population size is above a certain threshold value (to obtain predictable yield) and no catches if the population size is below the threshold (to protect the population). It is shown that boundary equilibrium bifurcation and sliding–grazing bifurcation can happen as the threshold value varies. We provide analytical analysis to prove the existence of sliding limit cycles and sliding homoclinic cycles, the coexistence of them with standard limit cycles. Some numerical simulations are given to demonstrate our results.
科研通智能强力驱动
Strongly Powered by AbleSci AI