材料科学
锂(药物)
电解质
纳米线
离子键合
氧气
金属锂
纳米技术
快离子导体
离子电导率
金属
空位缺陷
化学物理
化学工程
离子
电极
物理化学
结晶学
冶金
化学
医学
有机化学
工程类
内分泌学
作者
Yuhui Xue,Lijun He,Dan Luo,Haozhen Dou,Zhongwei Chen
标识
DOI:10.1002/adfm.202509717
摘要
Abstract Poly(vinylidene fluoride) (PVDF)‐based solid‐state electrolytes face critical challenges of sluggish ion transport and interfacial instability in lithium metal batteries, exacerbated by crystalline rigidity and residual organic solvents. Herein, a composite solid‐state electrolyte (M 3‐x PVH) integrating oxygen‐vacancy‐rich nanowires into a PVDF‐HFP matrix, which establishes the abundant continuous ion transport pathways and the customized ionic microenvironments, is designed. MoO 3‐x nanowires (SNWs) with abundant oxygen vacancies not only promote the flexibility of polymer chains and capture Li⁺ to form continuous ion transport pathways for obtaining high ion conductivity of 7.58×10 −4 S cm −1 , but also selectively bind dimethylformamide to customize the ionic microenvironment for accelerating Li⁺ desolvation and enhancing interfacial stability. Importantly, oxygen‐vacancy‐rich nanowires repel anions via charge repulsion and favor anion decomposition, thus forming an inorganic‐rich SEI. Remarkably, Li metal anode achieves ultra‐long cycling (>8000 h at 0.1 mA cm −2 ) and demonstrates excellent performance paired with the high‐voltage cathode NCM811. This work pioneers a novel strategy for designing high‐performance solid‐state electrolytes by synergistically engineering material dimensionality and defect chemistry, unlocking new possibilities for next‐generation lithium‐metal batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI