计算机科学
工作流程
直觉
水准点(测量)
药物发现
适应(眼睛)
析氧
领域(数学分析)
业务流程发现
过程(计算)
机器学习
化学
生物信息学
材料科学
生物
数据库
数学
物理化学
数学分析
电化学
电极
神经科学
哲学
相容性(地球化学)
业务流程
复合材料
操作系统
大地测量学
认识论
业务流程建模
地理
作者
Rui Ding,Jianguo Liu,Kang Hua,Xuebin Wang,Xiaoben Zhang,Minhua Shao,Yuxin Chen,Junhong Chen
出处
期刊:Science Advances
[American Association for the Advancement of Science]
日期:2025-04-04
卷期号:11 (14)
标识
DOI:10.1126/sciadv.adr9038
摘要
Developing advanced catalysts for acidic oxygen evolution reaction (OER) is crucial for sustainable hydrogen production. This study presents a multistage machine learning (ML) approach to streamline the discovery and optimization of complex multimetallic catalysts. Our method integrates data mining, active learning, and domain adaptation throughout the materials discovery process. Unlike traditional trial-and-error methods, this approach systematically narrows the exploration space using domain knowledge with minimized reliance on subjective intuition. Then, the active learning module efficiently refines element composition and synthesis conditions through iterative experimental feedback. The process culminated in the discovery of a promising Ru-Mn-Ca-Pr oxide catalyst. Our workflow also enhances theoretical simulations with domain adaptation strategy, providing deeper mechanistic insights aligned with experimental findings. By leveraging diverse data sources and multiple ML strategies, we demonstrate an efficient pathway for electrocatalyst discovery and optimization. This comprehensive, data-driven approach represents a paradigm shift and potentially benchmark in electrocatalysts research.
科研通智能强力驱动
Strongly Powered by AbleSci AI