催化作用
光热治疗
材料科学
光激发
氧气
离解(化学)
纳米技术
化学工程
吸附
兴奋剂
化学物理
光化学
化学
物理化学
光电子学
原子物理学
有机化学
工程类
生物化学
物理
激发态
作者
Xueying Wan,Yilin Zhao,Yifan Li,Jun Ma,Yadi Gu,Cheng Liu,Yanhua Luo,Guang Yang,Yi Cui,Dong Liu,Yujie Xiong
标识
DOI:10.1002/anie.202505244
摘要
Photothermal catalysis under mild conditions represents a promising and sustainable approach for CO2 conversion into high‐value chemicals, thereby enabling efficient carbon recycling. However, precise manipulation of active sites and their coordination environments at the atomic level to enhance catalyst performance still remains challenging. Here, we present a single‐atom doping strategy for oxygen vacancy engineering to facilitate efficient CO2 conversion. Specifically, an In2O3‐based catalyst with abundant oxygen vacancies induced by homogeneously dispersed Cu single atoms is constructed, exhibiting a competent CO2 reduction performance in photothermal reverse water‐gas shift reaction. The optimal Cu‐In2O3 catalyst achieves a CO yield rate of 46.17 mol·gCu‐1·h‐1 with near‐unity selectivity (>99%) and demonstrates stability over 450 hours under 3 W·cm‐2 full‐spectrum light illumination. Comprehensive spectroscopic characterization and computational simulations elucidate that the Cu single atoms synergistically interact with oxygen vacancies to promote H2 dissociation and CO2 activation under photoexcitation. This work provides insights into the design of photothermal catalysts, emphasizing the transformative potential of atomic‐site engineering for efficient CO2 conversion and sustainable energy technologies.
科研通智能强力驱动
Strongly Powered by AbleSci AI