亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Quantitative CT Biomarkers for Renal Cell Carcinoma Subtype Differentiation: A Comparison of DECT, PCT, and CT Texture Analysis

医学 肾透明细胞癌 核医学 肾细胞癌 放射科 病理
作者
Anjali Sah,Sneha Goswami,Amit Gupta,Sanil Garg,Nidhi Yadav,Rohan Raju Dhanakshirur,Chandan J. Das
出处
期刊:British Journal of Radiology [Wiley]
标识
DOI:10.1093/bjr/tqaf092
摘要

Abstract Objective To evaluate and compare the diagnostic performance of CT texture analysis (CTTA), perfusion CT (PCT), and dual-energy CT (DECT) in distinguishing between clear-cell renal cell carcinoma (ccRCC) and non-ccRCC. Methods This retrospective study included 66 patients with RCC (52 ccRCC and 14 non-ccRCC) who underwent DECT and PCT imaging before surgery (2017-2022). This DECT parameters (iodine concentration, iodine ratio) and PCT parameters (blood flow, blood volume, mean transit time, time to peak) were measured using circular ROIs. CTTA features were extracted from manually annotated corticomedullary-phase images. A machine learning model was developed to differentiate RCC subtypes, with performance evaluated using k-fold cross-validation. Multivariate logistic regression analysis was performed to assess the predictive value of each imaging modality. Results All three imaging modalities demonstrated high diagnostic accuracy, with F1 scores of 0.9107, 0.9358, and 0.9348 for PCT, DECT, and CTTA, respectively. None of the three models were significantly different (p > 0.05). While each modality could effectively differentiate between ccRCC and non-ccRCC, higher iodine ratio (IR) on DECT and increased entropy on CTTA were independent predictors of ccRCC, with F1 scores of 0.9345 and 0.9272, respectively (p < 0.001). DECT achieved the highest individual performance, with iodine ratio (IR) being the best predictor (F1 = 0.902). IR was significantly higher in ccRCC (65.12 ± 23.73) compared to non-ccRCC (35.17 ± 17.99, p < 0.001), yielding an AUC of 0.91, sensitivity of 87.5%, and specificity of 89.3%. Entropy on CTTA was the strongest texture feature, with higher values in ccRCC (7.94 ± 0.336) than non-ccRCC (6.43 ± 0.297, p < 0.001), achieving an AUC of 0.94, sensitivity of 83.0%, and specificity of 92.3%. The combined ML model integrating DECT, PCT, and CTTA parameters yielded the highest diagnostic accuracy, with an F1 score of 0.954. Conclusions PCT, DECT, and CTTA effectively differentiate RCC subtypes. However, iodine ratio (DECT) and entropy (CTTA) emerged as key independent markers, suggesting their clinical utility in RCC characterization. Advance in knowledge Accurate, non-invasive biomarkers are essential to differentiate RCC subtypes, aiding in prognosis and guiding targeted therapies, particularly in ccRCC, where treatment options differ significantly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助卡他采纳,获得10
1秒前
Kennis完成签到,获得积分10
2秒前
7秒前
Esperanza完成签到,获得积分10
11秒前
16秒前
量子星尘发布了新的文献求助10
25秒前
harvey完成签到,获得积分20
37秒前
harvey发布了新的文献求助10
40秒前
大个应助借一颗糖采纳,获得10
43秒前
Lucas应助认真学习采纳,获得10
52秒前
1分钟前
借一颗糖发布了新的文献求助10
1分钟前
1分钟前
1分钟前
欣一完成签到,获得积分10
1分钟前
林林发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助20
1分钟前
欣一发布了新的文献求助10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
害羞便当完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
拼搏啤酒完成签到,获得积分10
2分钟前
捉迷藏完成签到,获得积分0
2分钟前
认真学习发布了新的文献求助10
2分钟前
认真学习完成签到,获得积分10
2分钟前
Hello应助高兴的友菱采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
如梦中完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
小马甲应助ljyyy采纳,获得10
2分钟前
ylky完成签到 ,获得积分10
3分钟前
田様应助科研通管家采纳,获得10
3分钟前
思源应助科研通管家采纳,获得20
3分钟前
qqq完成签到 ,获得积分10
3分钟前
善学以致用应助嗯哼哈哈采纳,获得10
3分钟前
3分钟前
嗯哼哈哈发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4242452
求助须知:如何正确求助?哪些是违规求助? 3775960
关于积分的说明 11856262
捐赠科研通 3430701
什么是DOI,文献DOI怎么找? 1882784
邀请新用户注册赠送积分活动 934828
科研通“疑难数据库(出版商)”最低求助积分说明 841227