解耦(概率)
氧化还原
动力学
硫黄
催化作用
锂(药物)
材料科学
轨道能级差
电解质
无机化学
纳米技术
化学
物理化学
分子
电极
物理
有机化学
量子力学
控制工程
工程类
内分泌学
医学
作者
Wei Xiao,Kisoo Yoo,Jonghoon Kim,Hengyue Xu
出处
期刊:ACS Nano
[American Chemical Society]
日期:2025-06-17
卷期号:19 (25): 23223-23234
标识
DOI:10.1021/acsnano.5c05449
摘要
Advancing our understanding of heterogeneous catalysis is critical for resolving the kinetic challenges in lithium-sulfur batteries (LSBs). Herein, we propose a theoretical framework: the dual d-band model, which extends the classical d-band center theory by introducing two distinct catalytic sites with complementary d-band centers. Specifically, by strategically integrating two distinct catalytic sites with complementary d-band centers, where one aligns with the lowest unoccupied molecular orbital (LUMO) of sulfur species to optimize the sulfur reduction reaction (SRR) and the other aligns with the highest occupied molecular orbital (HOMO) to accelerate the sulfur evolution reaction (SER), the redox kinetics of sulfur species is effectively balanced. To verify this hypothesis, we developed a dual-site catalyst, Mn-RuO2 (MRO), featuring Ru sites tailored for SRR and the supplementary Mn sites optimized for SER. Leveraging this dual-site synergy, the MRO-based cell achieved superior performance under limited electrolyte conditions. This work presents a promising strategy to regulate sulfur redox reactions for high-performance LSBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI