Towards Expressive Spectral-Temporal Graph Neural Networks for Time Series Forecasting

计算机科学 时间序列 人工智能 人工神经网络 系列(地层学) 图形 机器学习 理论计算机科学 古生物学 生物
作者
Ming Jin,Guangsi Shi,Yuan-Fang Li,Bo Xiong,Tian Zhou,Flora D. Salim,Liang Zhao,Lingfei Wu,Qingsong Wen,Shirui Pan
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:47 (6): 4926-4939 被引量:4
标识
DOI:10.1109/tpami.2025.3545671
摘要

Time series forecasting has remained a focal point due to its vital applications in sectors such as energy management and transportation planning. Spectral-temporal graph neural network is a promising abstraction underlying most time series forecasting models that are based on graph neural networks (GNNs). However, more is needed to know about the underpinnings of this branch of methods. In this paper, we establish a theoretical framework that unravels the expressive power of spectral-temporal GNNs. Our results show that linear spectral-temporal GNNs are universal under mild assumptions, and their expressive power is bounded by our extended first-order Weisfeiler-Leman algorithm on discrete-time dynamic graphs. To make our findings useful in practice on valid instantiations, we discuss related constraints in detail and outline a theoretical blueprint for designing spatial and temporal modules in spectral domains. Building on these insights and to demonstrate how powerful spectral-temporal GNNs are based on our framework, we propose a simple instantiation named Temporal Graph Gegenbauer Convolution (TGGC), which significantly outperforms most existing models with only linear components and shows better model efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
戳戳发布了新的文献求助10
刚刚
1秒前
聪慧冰淇淋完成签到 ,获得积分10
1秒前
充电宝应助hsadu采纳,获得10
1秒前
3秒前
4秒前
4秒前
小蘑菇应助shirelylee采纳,获得10
6秒前
7秒前
rosemary发布了新的文献求助10
8秒前
8秒前
10秒前
10秒前
我们仨发布了新的文献求助10
10秒前
10秒前
浮游应助DBP87弹采纳,获得10
11秒前
Ryuu完成签到,获得积分10
11秒前
科研通AI5应助panhaoyu采纳,获得10
11秒前
12秒前
xdc发布了新的文献求助10
12秒前
13秒前
Camellia发布了新的文献求助10
14秒前
14秒前
盐茶厅人完成签到,获得积分10
15秒前
LLXY发布了新的文献求助10
15秒前
16秒前
16秒前
再也不见发布了新的文献求助20
17秒前
帅气的宽发布了新的文献求助10
18秒前
上官若男应助YZ采纳,获得10
19秒前
19秒前
冷月发布了新的文献求助10
19秒前
隐形曼青应助...00采纳,获得10
20秒前
zedhumble发布了新的文献求助10
20秒前
20秒前
小小发布了新的文献求助10
21秒前
浮游应助土豪的易文采纳,获得10
21秒前
Jasper应助我们仨采纳,获得10
23秒前
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5184408
求助须知:如何正确求助?哪些是违规求助? 4370229
关于积分的说明 13609334
捐赠科研通 4222301
什么是DOI,文献DOI怎么找? 2315790
邀请新用户注册赠送积分活动 1314326
关于科研通互助平台的介绍 1263281