已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Topology Identification of Weighted Complex Networks Under Intermittent Control and Its Application in Neural Networks

鉴定(生物学) 人工神经网络 拓扑(电路) 计算机科学 控制(管理) 网络拓扑 人工智能 数学 计算机网络 生物 植物 组合数学
作者
Huiling Chen,Chunmei Zhang,Han Yang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:1
标识
DOI:10.1109/tnnls.2025.3542505
摘要

Topology identification of stochastic complex networks is an important topic in network science. In modern identification techniques under a continuous framework, the controller has a negative dynamic gain (feedback gain), such that stochastic LaSalle's invariance principle (SLIP) is directly satisfied. In this article, the topology identification of stochastic complex networks is studied under aperiodic intermittent control (AIC). It is noteworthy that the AIC has a rest time, which indicates the SLIP is not valid since there is no negative feedback gained during this period. This motivates us to find other methods to obtain identification criteria. In this study, the graph-theoretic method and the stochastic analysis technique are integrated to obtain the almost surely exponential synchronization of drive-response networks. Furthermore, this integration enables the topology identification criteria of the drive network to be derived, which differs from previous work that directly utilized SLIP. It is worth mentioning that the topology identification criteria under the stochastic framework are first proposed based on the AIC in this work. The control strategy not only reduces the control cost but also makes it easier to operate. To enhance the application value of the network model, regime-switching diffusions, multiple weights, and nonlinear couplings are simultaneously considered. Finally, the proposed identification criteria are tested by using neural networks. At the same time, the validity of the theoretical results is further proved by numerical simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨念文完成签到 ,获得积分10
刚刚
赘婿应助剑影采纳,获得10
3秒前
爆米花应助xiaoliuyaonuli采纳,获得10
4秒前
多年以后完成签到,获得积分10
6秒前
Jimmy发布了新的文献求助10
6秒前
6秒前
qq完成签到,获得积分10
8秒前
11秒前
12秒前
13秒前
潮哈哈耶发布了新的文献求助10
14秒前
15秒前
15秒前
YIDAN发布了新的文献求助10
15秒前
16秒前
17秒前
小燕子发布了新的文献求助10
17秒前
任性柔发布了新的文献求助10
18秒前
小格子完成签到 ,获得积分10
20秒前
田様应助jeeet采纳,获得10
20秒前
21秒前
22秒前
阿九发布了新的文献求助10
22秒前
23秒前
25秒前
大模型应助王爷教你白给采纳,获得10
25秒前
田様应助王爷教你白给采纳,获得10
25秒前
CodeCraft应助王爷教你白给采纳,获得10
25秒前
26秒前
sam发布了新的文献求助10
26秒前
所所应助王爷教你白给采纳,获得10
26秒前
orixero应助王爷教你白给采纳,获得10
26秒前
26秒前
26秒前
小蘑菇应助王爷教你白给采纳,获得10
26秒前
酷波er应助王爷教你白给采纳,获得10
26秒前
nokkeke发布了新的文献求助10
26秒前
26秒前
阿白发布了新的文献求助10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
La RSE en pratique 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4407672
求助须知:如何正确求助?哪些是违规求助? 3892581
关于积分的说明 12113055
捐赠科研通 3537547
什么是DOI,文献DOI怎么找? 1941140
邀请新用户注册赠送积分活动 981918
科研通“疑难数据库(出版商)”最低求助积分说明 878341