电催化剂
材料科学
半导体
电解质
分解水
Boosting(机器学习)
光电化学
纳米技术
配体(生物化学)
光电化学电池
化学工程
电化学
光催化
电极
光电子学
催化作用
化学
物理化学
计算机科学
生物化学
机器学习
工程类
受体
作者
Chenglong Li,Saqib Mujtaba,Jingjing Quan,Xu Li,Xingming Ning,Pei Chen,Zhongwei An,Xinbing Chen
标识
DOI:10.1002/adfm.202501262
摘要
Abstract The loading of transition‐metal oxyhydroxide (TMOH) on semiconductor (SC) has been recognized as a promising approach for promoting photoelectrochemical (PEC) water splitting. Nonetheless, major challenges such as substantial carrier recombination and slow surface water oxidation continue to hinder the achievement of desirable PEC performance. This study proposes a feasible ligand engineering strategy to simultaneously boost charge separation and surface catalytic kinetics through coordinating 2‐methylimidazole (2‐MI) within a SC/TMOH system. In situ ultraviolet/visible spectroelectrochemistry (UV/vis‐SEC) and density functional theory (DFT) calculations show that the coordination of the 2‐MI ligand influences SC/TMOH and TMOH/electrolyte interfaces, notably enhancing the dynamics of hole transfer while simultaneously reducing the adsorption of oxygen‐containing intermediates. As anticipated, the BiVO 4 /FeNiOOH/2‐MI photoanode demonstrates an impressive photocurrent of 6.52 mA cm −2 at 1.23 V RHE , featuring excellent photostability and a low onset potential of 0.35 V RHE . Additionally, the 2‐MI molecule can be employed in the development of alternative configurations, such as BiVO 4 /FeNiOOH (soak)/2‐MI, to improve PEC efficiency. This work opens a new horizon in designing of desirable photoanodes for efficient and stable PEC water splitting.
科研通智能强力驱动
Strongly Powered by AbleSci AI