Cross-Modal Causal Representation Learning for Radiology Report Generation

计算机科学 情态动词 代表(政治) 人工智能 政治学 政治 化学 高分子化学 法学
作者
W.H. Chen,Yang Liu,Ce Wang,Jiarui Zhu,Guanbin Li,Cheng‐Lin Liu,Liang Lin
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tip.2025.3568746
摘要

Radiology Report Generation (RRG) is essential for computer-aided diagnosis and medication guidance, which can relieve the heavy burden of radiologists by automatically generating the corresponding radiology reports according to the given radiology image. However, generating accurate lesion descriptions remains challenging due to spurious correlations from visual-linguistic biases and inherent limitations of radiological imaging, such as low resolution and noise interference. To address these issues, we propose a two-stage framework named Cross-Modal Causal Representation Learning (CMCRL), consisting of the Radiological Cross-modal Alignment and Reconstruction Enhanced (RadCARE) pre-training and the Visual-Linguistic Causal Intervention (VLCI) fine-tuning. In the pre-training stage, RadCARE introduces a degradation-aware masked image restoration strategy tailored for radiological images, which reconstructs high-resolution patches from low-resolution inputs to mitigate noise and detail loss. Combined with a multiway architecture and four adaptive training strategies (e.g., text postfix generation with degraded images and text prefixes), RadCARE establishes robust cross-modal correlations even with incomplete data. In the VLCI phase, we deploy causal front-door intervention through two modules: the Visual Deconfounding Module (VDM) disentangles local-global features without fine-grained annotations, while the Linguistic Deconfounding Module (LDM) eliminates context bias without external terminology databases. Experiments on IU-Xray and MIMIC-CXR show that our CMCRL pipeline significantly outperforms state-of-the-art methods, with ablation studies confirming the necessity of both stages. Code and models are available at.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助科研通管家采纳,获得10
刚刚
1秒前
yufanhui应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
Hello应助JZX采纳,获得20
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
masterwill发布了新的文献求助10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
celine完成签到,获得积分10
1秒前
1秒前
2秒前
桐桐应助lulululucy采纳,获得10
2秒前
虚拟的水壶完成签到,获得积分10
4秒前
星辰大海应助yuntaozhou采纳,获得30
4秒前
Mia发布了新的文献求助10
4秒前
5秒前
猪猪hero发布了新的文献求助10
5秒前
丁丁发布了新的文献求助10
6秒前
6秒前
6秒前
LiuHP驳回了田様应助
7秒前
jjwen完成签到 ,获得积分10
7秒前
xxxxx发布了新的文献求助10
8秒前
8秒前
JZX完成签到,获得积分10
8秒前
8秒前
8秒前
脑洞疼应助魔幻的曼寒采纳,获得10
9秒前
10秒前
10秒前
11秒前
12秒前
蓝胖子完成签到 ,获得积分10
12秒前
盐酸补钙发布了新的文献求助10
12秒前
灵巧的导师完成签到,获得积分10
12秒前
JZX发布了新的文献求助20
12秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Genomic signature of non-random mating in human complex traits 2000
Semantics for Latin: An Introduction 1155
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4108027
求助须知:如何正确求助?哪些是违规求助? 3646040
关于积分的说明 11549281
捐赠科研通 3352210
什么是DOI,文献DOI怎么找? 1841878
邀请新用户注册赠送积分活动 908300
科研通“疑难数据库(出版商)”最低求助积分说明 825458