Cancer Cell Line Classification Using Raman Spectroscopy of Cancer-Derived Exosomes and Machine Learning

化学 微泡 拉曼光谱 癌症 癌细胞系 直线(几何图形) 光谱学 癌细胞 纳米技术 生物化学 小RNA 内科学 光学 医学 物理 几何学 数学 材料科学 量子力学 基因
作者
Jorge Villazon,Nestor Dela Cruz,Lingyan Shi
出处
期刊:Analytical Chemistry [American Chemical Society]
标识
DOI:10.1021/acs.analchem.4c06966
摘要

Liquid biopsies are an emerging, noninvasive tool for cancer diagnostics, utilizing biological fluids for molecular profiling. Nevertheless, the current methods often lack the sensitivity and specificity necessary for early detection and real-time monitoring. This work explores an advanced approach to improving liquid biopsy techniques through machine learning analysis of the Raman spectra measured to classify distinct exosome solutions by their cancer origin. This was accomplished by conducting principal component analysis (PCA) of the Raman spectra of exosomes from three cancer cell lines (COLO205, A375, and LNCaP) to extract chemically significant features. This reduced set of features was then utilized to train a linear discriminant analysis (LDA) classifier to predict the source of the exosomes. Furthermore, we investigated differences in the lipid composition in these exosomes by their spectra. This spectral similarity analysis revealed differences in lipid profiles between the different cancer cell lines as well as identified the predominant lipids across all exosomes. Our PCA-LDA framework achieved 93.3% overall accuracy and F1 scores of 98.2%, 91.1%, and 91.0% for COLO205, A375, and LNCaP, respectively. Our results from spectral similarity analysis were also shown to support previous findings of lipid dynamics due to cancer pathology and pertaining to exosome function and structure. These findings underscore the benefits of enhancing Raman spectroscopy analysis with machine learning, laying the groundwork for the development of early noninvasive cancer diagnostics and personalized treatment strategies. This work potentially establishes the foundation for refining the classification model and optimizing exosome extraction and detection from clinical samples for clinical translation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
稳稳稳发布了新的文献求助10
刚刚
乐视薯片发布了新的文献求助10
1秒前
潜龙发布了新的文献求助10
1秒前
hl123456完成签到,获得积分10
2秒前
单纯乞完成签到,获得积分10
3秒前
科研通AI5应助hyx9504采纳,获得30
4秒前
4秒前
崔玉婷发布了新的文献求助10
5秒前
AhhHuang应助科研宝采纳,获得10
5秒前
范海辛完成签到,获得积分10
6秒前
KaK完成签到,获得积分10
7秒前
雨宿完成签到,获得积分10
7秒前
yangz发布了新的文献求助10
7秒前
9秒前
10秒前
热心的棒棒糖完成签到 ,获得积分10
10秒前
打打应助ciao采纳,获得20
12秒前
ding应助苹果犀牛采纳,获得10
13秒前
14秒前
xh发布了新的文献求助10
14秒前
传统的松鼠完成签到 ,获得积分10
14秒前
17秒前
17秒前
小党完成签到,获得积分10
17秒前
18秒前
qwertyuiop发布了新的文献求助10
18秒前
18秒前
112233完成签到,获得积分10
18秒前
19秒前
21秒前
Hello应助阿橘采纳,获得10
21秒前
kyJYbs发布了新的文献求助10
21秒前
香蕉招牌发布了新的文献求助10
21秒前
112233发布了新的文献求助10
21秒前
sijia_yang给sijia_yang的求助进行了留言
22秒前
科研通AI5应助吴wish采纳,获得20
22秒前
科研通AI5应助潜龙采纳,获得30
22秒前
yu发布了新的文献求助10
22秒前
云雀关注了科研通微信公众号
22秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811218
求助须知:如何正确求助?哪些是违规求助? 3355594
关于积分的说明 10376790
捐赠科研通 3072455
什么是DOI,文献DOI怎么找? 1687496
邀请新用户注册赠送积分活动 811671
科研通“疑难数据库(出版商)”最低求助积分说明 766728