Large Language Models and Artificial Neural Networks for Assessing 1-Year Mortality in Patients With Myocardial Infarction: Analysis From the Medical Information Mart for Intensive Care IV (MIMIC-IV) Database

接收机工作特性 医学 心肌梗塞 死亡率 急诊医学 重症监护 病历 人工神经网络 统计的 重症监护医学 数据库 人工智能 机器学习 医疗急救 内科学 统计 计算机科学 数学
作者
Boqun Shi,Liangguo Chen,Shuo Pang,Yue Wang,Shen Wang,Fadong Li,Wenxin Zhao,Pengrong Guo,L H Zhang,Chu Fan,Yi Zou,Xiaofan Wu
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:27: e67253-e67253
标识
DOI:10.2196/67253
摘要

Background Accurate mortality risk prediction is crucial for effective cardiovascular risk management. Recent advancements in artificial intelligence (AI) have demonstrated potential in this specific medical field. Qwen-2 and Llama-3 are high-performance, open-source large language models (LLMs) available online. An artificial neural network (ANN) algorithm derived from the SWEDEHEART (Swedish Web System for Enhancement and Development of Evidence-Based Care in Heart Disease Evaluated According to Recommended Therapies) registry, termed SWEDEHEART-AI, can predict patient prognosis following acute myocardial infarction (AMI). Objective This study aims to evaluate the 3 models mentioned above in predicting 1-year all-cause mortality in critically ill patients with AMI. Methods The Medical Information Mart for Intensive Care IV (MIMIC-IV) database is a publicly available data set in critical care medicine. We included 2758 patients who were first admitted for AMI and discharged alive. SWEDEHEART-AI calculated the mortality rate based on each patient’s 21 clinical variables. Qwen-2 and Llama-3 analyzed the content of patients’ discharge records and directly provided a 1-decimal value between 0 and 1 to represent 1-year death risk probabilities. The patients’ actual mortality was verified using follow-up data. The predictive performance of the 3 models was assessed and compared using the Harrell C-statistic (C-index), the area under the receiver operating characteristic curve (AUROC), calibration plots, Kaplan-Meier curves, and decision curve analysis. Results SWEDEHEART-AI demonstrated strong discrimination in predicting 1-year all-cause mortality in patients with AMI, with a higher C-index than Qwen-2 and Llama-3 (C-index 0.72, 95% CI 0.69-0.74 vs C-index 0.65, 0.62-0.67 vs C-index 0.56, 95% CI 0.53-0.58, respectively; all P<.001 for both comparisons). SWEDEHEART-AI also showed high and consistent AUROC in the time-dependent ROC curve. The death rates calculated by SWEDEHEART-AI were positively correlated with actual mortality, and the 3 risk classes derived from this model showed clear differentiation in the Kaplan-Meier curve (P<.001). Calibration plots indicated that SWEDEHEART-AI tended to overestimate mortality risk, with an observed-to-expected ratio of 0.478. Compared with the LLMs, SWEDEHEART-AI demonstrated positive and greater net benefits at risk thresholds below 19%. Conclusions SWEDEHEART-AI, a trained ANN model, demonstrated the best performance, with strong discrimination and clinical utility in predicting 1-year all-cause mortality in patients with AMI from an intensive care cohort. Among the LLMs, Qwen-2 outperformed Llama-3 and showed moderate predictive value. Qwen-2 and SWEDEHEART-AI exhibited comparable classification effectiveness. The future integration of LLMs into clinical decision support systems holds promise for accurate risk stratification in patients with AMI; however, further research is needed to optimize LLM performance and address calibration issues across diverse patient populations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柔弱的向雪完成签到,获得积分10
1秒前
1秒前
YY完成签到 ,获得积分10
2秒前
大大小发布了新的文献求助10
4秒前
许甜甜鸭应助科研通管家采纳,获得20
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
4秒前
李健应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
许甜甜鸭应助科研通管家采纳,获得20
4秒前
慕青应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得30
4秒前
4秒前
马海完成签到,获得积分10
6秒前
飘逸的耳机完成签到,获得积分10
7秒前
彦希完成签到 ,获得积分10
9秒前
搞怪的香菇完成签到,获得积分10
9秒前
小人物发布了新的文献求助10
10秒前
马海发布了新的文献求助10
10秒前
蓉儿完成签到 ,获得积分10
11秒前
12秒前
科研小废物完成签到 ,获得积分10
14秒前
现实的飞飞完成签到,获得积分10
15秒前
小权拳的权完成签到,获得积分10
16秒前
常尽欢完成签到 ,获得积分10
18秒前
20秒前
21秒前
舒克完成签到,获得积分10
21秒前
许甜甜鸭应助马海采纳,获得10
22秒前
顺利超短裙完成签到,获得积分10
24秒前
淡扫峨眉发布了新的文献求助10
25秒前
Ciyuan完成签到,获得积分10
28秒前
Judgen完成签到,获得积分20
29秒前
orixero应助try采纳,获得10
31秒前
竹马完成签到 ,获得积分10
31秒前
31秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Maturation of NMDA receptor-mediated spontaneous postsynaptic currents in the rat locus coeruleus neurons 200
Preparative Methods of Polymer Chemistry, 3rd Edition 200
The Oxford Handbook of Chinese Philosophy 200
Deciphering Earth's History: the Practice of Stratigraphy 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834973
求助须知:如何正确求助?哪些是违规求助? 3377482
关于积分的说明 10498771
捐赠科研通 3096967
什么是DOI,文献DOI怎么找? 1705366
邀请新用户注册赠送积分活动 820529
科研通“疑难数据库(出版商)”最低求助积分说明 772123