Large Language Models and Artificial Neural Networks for Assessing 1-Year Mortality in Patients With Myocardial Infarction: Analysis From the Medical Information Mart for Intensive Care IV (MIMIC-IV) Database

接收机工作特性 医学 心肌梗塞 死亡率 急诊医学 重症监护 病历 人工神经网络 统计的 重症监护医学 数据库 人工智能 机器学习 医疗急救 内科学 统计 计算机科学 数学
作者
Boqun Shi,Liangguo Chen,Shuo Pang,Yue Wang,Shen Wang,Fadong Li,Wenxin Zhao,Pengrong Guo,L H Zhang,Chu Fan,Yi Zou,Xiaofan Wu
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:27: e67253-e67253
标识
DOI:10.2196/67253
摘要

Background Accurate mortality risk prediction is crucial for effective cardiovascular risk management. Recent advancements in artificial intelligence (AI) have demonstrated potential in this specific medical field. Qwen-2 and Llama-3 are high-performance, open-source large language models (LLMs) available online. An artificial neural network (ANN) algorithm derived from the SWEDEHEART (Swedish Web System for Enhancement and Development of Evidence-Based Care in Heart Disease Evaluated According to Recommended Therapies) registry, termed SWEDEHEART-AI, can predict patient prognosis following acute myocardial infarction (AMI). Objective This study aims to evaluate the 3 models mentioned above in predicting 1-year all-cause mortality in critically ill patients with AMI. Methods The Medical Information Mart for Intensive Care IV (MIMIC-IV) database is a publicly available data set in critical care medicine. We included 2758 patients who were first admitted for AMI and discharged alive. SWEDEHEART-AI calculated the mortality rate based on each patient’s 21 clinical variables. Qwen-2 and Llama-3 analyzed the content of patients’ discharge records and directly provided a 1-decimal value between 0 and 1 to represent 1-year death risk probabilities. The patients’ actual mortality was verified using follow-up data. The predictive performance of the 3 models was assessed and compared using the Harrell C-statistic (C-index), the area under the receiver operating characteristic curve (AUROC), calibration plots, Kaplan-Meier curves, and decision curve analysis. Results SWEDEHEART-AI demonstrated strong discrimination in predicting 1-year all-cause mortality in patients with AMI, with a higher C-index than Qwen-2 and Llama-3 (C-index 0.72, 95% CI 0.69-0.74 vs C-index 0.65, 0.62-0.67 vs C-index 0.56, 95% CI 0.53-0.58, respectively; all P<.001 for both comparisons). SWEDEHEART-AI also showed high and consistent AUROC in the time-dependent ROC curve. The death rates calculated by SWEDEHEART-AI were positively correlated with actual mortality, and the 3 risk classes derived from this model showed clear differentiation in the Kaplan-Meier curve (P<.001). Calibration plots indicated that SWEDEHEART-AI tended to overestimate mortality risk, with an observed-to-expected ratio of 0.478. Compared with the LLMs, SWEDEHEART-AI demonstrated positive and greater net benefits at risk thresholds below 19%. Conclusions SWEDEHEART-AI, a trained ANN model, demonstrated the best performance, with strong discrimination and clinical utility in predicting 1-year all-cause mortality in patients with AMI from an intensive care cohort. Among the LLMs, Qwen-2 outperformed Llama-3 and showed moderate predictive value. Qwen-2 and SWEDEHEART-AI exhibited comparable classification effectiveness. The future integration of LLMs into clinical decision support systems holds promise for accurate risk stratification in patients with AMI; however, further research is needed to optimize LLM performance and address calibration issues across diverse patient populations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
特大包包完成签到,获得积分10
1秒前
1秒前
芋泥完成签到 ,获得积分10
2秒前
Emma完成签到 ,获得积分10
2秒前
文雨完成签到,获得积分10
2秒前
小博完成签到,获得积分10
2秒前
周全完成签到 ,获得积分10
4秒前
阿宁宁完成签到 ,获得积分10
4秒前
科研醉汉完成签到,获得积分10
4秒前
应井完成签到,获得积分10
5秒前
5秒前
沉默的鸡翅完成签到 ,获得积分10
6秒前
时光中的微粒完成签到 ,获得积分10
7秒前
小白完成签到 ,获得积分10
8秒前
ljj722发布了新的文献求助10
8秒前
薛得豪完成签到,获得积分10
9秒前
kyokyoro完成签到,获得积分10
9秒前
lilei完成签到,获得积分10
10秒前
lvxinda完成签到,获得积分10
10秒前
是我呀吼发布了新的文献求助10
10秒前
carol0705完成签到,获得积分10
11秒前
12秒前
simongao完成签到 ,获得积分10
12秒前
令狐万仇完成签到,获得积分10
12秒前
喜悦诗翠完成签到 ,获得积分10
12秒前
舟遥遥完成签到,获得积分10
14秒前
14秒前
夏沫完成签到,获得积分10
14秒前
晴天不冷完成签到,获得积分10
14秒前
诡异的饭团完成签到,获得积分10
14秒前
16秒前
JOBZ完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
秦坦完成签到,获得积分10
18秒前
三杠发布了新的文献求助10
19秒前
绵绵球完成签到,获得积分0
19秒前
hhh发布了新的文献求助10
19秒前
19秒前
嘿嘿嘿完成签到,获得积分10
19秒前
四斤瓜发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5093568
求助须知:如何正确求助?哪些是违规求助? 4307112
关于积分的说明 13417958
捐赠科研通 4133280
什么是DOI,文献DOI怎么找? 2264502
邀请新用户注册赠送积分活动 1268092
关于科研通互助平台的介绍 1203910