STCC enhances spatial domain detection through consensus clustering of spatial transcriptomics data

聚类分析 空间分析 可扩展性 数据挖掘 计算机科学 共识聚类 领域(数学分析) 理论(学习稳定性) 机器学习 CURE数据聚类算法 相关聚类 数据库 数学 数学分析 统计
作者
Congcong Hu,Nana Wei,Jiyuan Yang,Hua‐Jun Wu,Xiaoqi Zheng
出处
期刊:Genome Research [Cold Spring Harbor Laboratory Press]
标识
DOI:10.1101/gr.280031.124
摘要

The rapid advance of spatially resolved transcriptomics technologies has yielded substantial spatial transcriptomics data. Deriving biological insights from these data poses nontrivial computational and analysis challenges, of which the most fundamental step is spatial domain detection (or spatial clustering). Although a number of tools for spatial domain detection have been proposed in recent years, their performance varies across data sets and experimental platforms. It is thus an important task to take full advantage of different tools to get a more accurate and stable result through consensus strategy. In this work, we developed STCC, a novel consensus clustering framework for spatial transcriptomics data that aggregates outcomes from state-of-the-art tools using a variety of consensus strategies, including Onehot-based, average-based, hypergraph-based, and wNMF-based methods. Comprehensive assessments on simulated and real data from distinct experimental platforms show that consensus clustering significantly improves clustering accuracy over individual methods under varied input parameters. For normal tissue samples exhibiting clear layered structure, consensus clustering by integrating multiple baseline methods leads to improved results. Conversely, when analyzing tumor samples that display scattered cell type distribution patterns, integration of a single baseline method yields satisfactory performance. For consensus strategies, average-based and hypergraph-based approaches demonstrate optimal precision and stability. Overall, STCC provides a scalable and practical solution for spatial domain detection in spatial transcriptomics data, laying a solid foundation for future research and applications in spatial transcriptomics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lillianzhu1完成签到 ,获得积分10
刚刚
1秒前
单纯灵安完成签到,获得积分20
2秒前
简简单单完成签到,获得积分10
5秒前
日月完成签到,获得积分10
6秒前
YUUNEEQUE完成签到,获得积分10
7秒前
宇文沛岚完成签到,获得积分10
7秒前
芝士雪豹发布了新的文献求助10
7秒前
9秒前
haha完成签到,获得积分10
9秒前
现代代芹应助莫若采纳,获得10
9秒前
善学以致用应助wuta采纳,获得10
11秒前
柯雪完成签到,获得积分20
11秒前
yyc666发布了新的文献求助10
12秒前
haha发布了新的文献求助10
12秒前
13秒前
Ava应助ZhihaoZhu采纳,获得10
14秒前
QL关闭了QL文献求助
15秒前
15秒前
15秒前
16秒前
17秒前
柯雪发布了新的文献求助10
19秒前
19秒前
20秒前
kongzy发布了新的文献求助10
20秒前
21秒前
QWQ完成签到,获得积分10
23秒前
25秒前
无限筝发布了新的文献求助10
25秒前
木同发布了新的文献求助10
25秒前
科研通AI5应助木木采纳,获得30
26秒前
隐形曼青应助Hao采纳,获得10
26秒前
Akim应助123采纳,获得10
26秒前
天天快乐应助菰蒲采纳,获得10
27秒前
顾矜应助wsq采纳,获得10
28秒前
现代代芹应助inter采纳,获得30
28秒前
赘婿应助形随将至采纳,获得10
28秒前
zheng華发布了新的文献求助10
29秒前
高分求助中
The world according to Garb 600
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3822402
求助须知:如何正确求助?哪些是违规求助? 3364768
关于积分的说明 10432844
捐赠科研通 3083582
什么是DOI,文献DOI怎么找? 1696289
邀请新用户注册赠送积分活动 815704
科研通“疑难数据库(出版商)”最低求助积分说明 769255