Non-destructive evaluation of bond strength between epoxy repair material and concrete under wet surface

环氧树脂 复合材料 粘结强度 材料科学 债券 结构工程 法律工程学 胶粘剂 工程类 业务 图层(电子) 财务
作者
Jianhui Tang,Yin Bai,Wenxun Qian,Peng Lv
出处
期刊:Case Studies in Construction Materials [Elsevier]
卷期号:22: e04509-e04509
标识
DOI:10.1016/j.cscm.2025.e04509
摘要

The bond strength between epoxy repair materials and concrete is significantly influenced by surface moisture and roughness, leading to increased variability in bond strength measurements. Traditional pull-off tests, while commonly used, are destructive and inefficient. This study introduces a novel framework integrating three-dimensional morphology analysis, ultrasonic pulse velocity (UPV), and artificial neural networks (ANNs) to predict bond strength under wet conditions. Four concrete substrates (Surfaces I–IV) with increasing roughness were prepared, and 23 surface roughness parameters were obtained by three-dimensional scanning technology. The wave velocity and amplitude parameters of epoxy repair material-concrete were obtained through UPV method. The bonding strength was obtained by pull-off method. Based on Levenberg-Marquardt (LM), Broyden-Fletcher-Goldfarb-Shanno (BFGS) and Bayesian regularization (BR) ANN training algorithms, the nondestructive evaluation models of epoxy repair material-concrete bonding strength under wet surface considering roughness and acoustic parameters were constructed. The results revealed a 38.6 % increase in bond strength from 2.16 MPa (Surface I) to 3.11 MPa (Surface IV), accompanied by 8.3 % and 7.7 % reductions in ultrasonic wave velocity (5.36 → 4.91 km/s) and amplitude (102.6 → 94.8 dB), respectively. Among 23 surface parameters, root mean square slope (Sdq) and interface expansion area ratio (Sdr) showed the strongest correlation with bond strength (ρ=0.91 and ρ=0.90, Spearman rank). The BFGS algorithm achieved the highest prediction accuracy, with a correlation coefficient (R) of 0.89 and a mean absolute percentage error (MAPE) of 6.09 %, while the BR model exhibited superior stability (MAPE = 6.08 %, standard deviation = 0.12 MPa). This work provides the first systematic integration of 3D surface and acoustic properties for non-destructive bond strength evaluation in wet conditions, offering actionable solutions for optimizing epoxy repairs in moisture-prone environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助文艺的又亦采纳,获得10
1秒前
眉洛发布了新的文献求助10
1秒前
飞碟发布了新的文献求助160
1秒前
DONG发布了新的文献求助10
2秒前
DrleedsG完成签到,获得积分10
2秒前
怡然的友容完成签到,获得积分10
3秒前
凶狠的白竹完成签到,获得积分10
3秒前
标致的路灯完成签到 ,获得积分10
3秒前
3秒前
3秒前
潇洒的问夏完成签到,获得积分10
4秒前
罗先生完成签到,获得积分10
4秒前
5秒前
5秒前
yangkunmedical完成签到,获得积分10
6秒前
6秒前
8秒前
小魔女完成签到,获得积分10
8秒前
蓝天发布了新的文献求助10
9秒前
元66666发布了新的文献求助10
9秒前
玻璃里的阳光完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
平常梦岚完成签到,获得积分20
11秒前
11秒前
科研顺利发布了新的文献求助10
12秒前
jevon发布了新的文献求助10
12秒前
Ansong完成签到,获得积分10
12秒前
12秒前
12秒前
顾矜应助谦让的傲芙采纳,获得10
13秒前
Hello应助李卓航采纳,获得10
13秒前
14秒前
木子发布了新的文献求助10
14秒前
陌鸢完成签到,获得积分10
14秒前
宅多点应助郑沫沫采纳,获得10
14秒前
852应助DONG采纳,获得10
15秒前
Fanxq发布了新的文献求助10
16秒前
17秒前
红彤彤的小脸啊完成签到,获得积分10
17秒前
林林发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5553580
求助须知:如何正确求助?哪些是违规求助? 4638120
关于积分的说明 14652281
捐赠科研通 4579970
什么是DOI,文献DOI怎么找? 2512009
邀请新用户注册赠送积分活动 1486966
关于科研通互助平台的介绍 1457791