Mamba for Landslide Detection: A Lightweight Model for Mapping Landslides With Very High-Resolution Images

山崩 遥感 地质学 高分辨率 分辨率(逻辑) 计算机科学 地貌学 人工智能
作者
Xiaochuan Tang,Zhong Lu,Marco Lovati,Xiaochuang Yan,Xiaojun Yuan,Dongfen Li,Huailiang Li,Hongjun Li,Sansar Raj Meena,Alessandro Novellino,Lorenzo Nava,Filippo Catani
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:63: 1-17
标识
DOI:10.1109/tgrs.2025.3598446
摘要

Heavy rainfall and earthquake in mountain areas usually trigger numerous landslides. Fast and accurate mapping of landslides is crucial for risk management and emergency rescue. Deep learning-based landslide detection methods can automate identification, but convolutional neural network (CNN) models focus primarily on local features, often missing crucial global context in landslide images. Conversely, Transformer-based models excel at capturing global features but are hindered by high computational complexity. As a result, existing detection models struggle to strike an effective balance between accuracy and efficiency. To address this issue, this article presents a lightweight landslide detection method based on the newly proposed Mamba network. Specifically, a landslide detection model named SegMamba2D with an encoder–decoder structure is proposed. In the encoder, the Mamba network is used to extract multiscale features. A state-space model (SSM) is employed to reduce computational complexity while maintaining accuracy. In the decoder, a multilayer perceptron is used to build a lightweight decoder, ensuring that the model’s overall complexity remains low. The experimental results on both public and new datasets demonstrate that SegMamba2D achieves a superior landslide detection accuracy, with an approximately 2% improvement in F1 score across various scenarios over conventional models, while significantly reducing computational costs. Additionally, SegMamba2D demonstrates robust generalization performance across diverse research areas. These advancements highlight the model’s potential to enhance accuracy in creating landslide inventories and expedite emergency response times during landslide disasters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xu1227发布了新的文献求助10
刚刚
高高发布了新的文献求助10
刚刚
Umar完成签到,获得积分10
2秒前
2秒前
Ava应助traminer采纳,获得10
2秒前
3秒前
小七发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
搜集达人应助DJ采纳,获得10
4秒前
Northtime完成签到,获得积分10
4秒前
溜溜蛋完成签到,获得积分10
5秒前
orixero应助朔朔朔朔子采纳,获得20
5秒前
5秒前
lsy完成签到,获得积分10
6秒前
花痴的平安完成签到,获得积分10
6秒前
CodeCraft应助小逮采纳,获得10
6秒前
7秒前
7秒前
Lyon发布了新的文献求助10
7秒前
敏家发布了新的文献求助10
8秒前
sss2021完成签到,获得积分10
8秒前
瞎闹腾完成签到,获得积分10
8秒前
xu1227完成签到,获得积分10
8秒前
赵十一发布了新的文献求助10
8秒前
Yu发布了新的文献求助10
9秒前
婷婷完成签到,获得积分10
9秒前
卜天亦发布了新的文献求助10
10秒前
11秒前
烟花应助FF采纳,获得10
12秒前
夜信完成签到,获得积分10
13秒前
try完成签到,获得积分10
14秒前
Akim应助hujin采纳,获得10
14秒前
bisalus发布了新的文献求助10
14秒前
田様应助YXHCM采纳,获得10
15秒前
赵梓蓉发布了新的文献求助10
15秒前
15秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295242
求助须知:如何正确求助?哪些是违规求助? 4444776
关于积分的说明 13834634
捐赠科研通 4329086
什么是DOI,文献DOI怎么找? 2376526
邀请新用户注册赠送积分活动 1371792
关于科研通互助平台的介绍 1337058