已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Senescent fibroblasts secrete CTHRC1 to promote cancer stemness in hepatocellular carcinoma

癌变 肿瘤微环境 间质细胞 癌症 生物 肿瘤进展 衰老 癌症研究 癌相关成纤维细胞 癌细胞 生物信息学 细胞生物学 遗传学
作者
Hai Huang,Peng Wang,Qiaodan Zhou,Yuchong Zhao,Luyao Liu,Haochen Cui,Jingwen Liang,Mengdie Cao,Wei Chen,Ronghua Wang,Shiru Chen,Si Xiong,Bin Cheng,Shuya Bai
出处
期刊:Cell Communication and Signaling [Springer Nature]
卷期号:23 (1)
标识
DOI:10.1186/s12964-025-02369-8
摘要

Cellular senescence plays a significant role in tumorigenesis and tumor progression. Substantial evidence indicates that senescence occurs in cancer-associated fibroblasts (CAFs), the predominant stromal component within the tumor microenvironment (TME), which profoundly impacts tumor biology. However, despite growing evidence of stromal cell involvement in cancer progression, the specific mechanisms and clinical implications of senescent CAFs (SCAFs) in hepatocellular carcinoma (HCC) have not been fully elucidated. The senescence signature was utilized to evaluate the senescence status of cell types within the TME of HCC using the GSE149614 dataset. The CytoTRACE and cell-cell communication analysis were used to find the correlation between cancer stemness and SCAFs. A risk prediction model associated with SCAFs was constructed to investigate potential mechanisms by which SCAFs promote tumor progression. Single-cell RNA sequencing data was used to identify senescent CAF-related genes. Gene expression and clinical data for HCC were obtained from the Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC), and National Omics Data Encyclopedia (NODE) databases. Using four machine-learning algorithms, crucial genes were identified to develop a CAF-senescence-related risk model, predicting prognosis, cancer stemness, immune infiltration, tumor mutation burden, and therapeutic responses in HCC patients. Next, we explored the role of Collagen Triple Helix Repeat Containing-1 (CTHRC1) in cancer stemness using both in vitro and in vivo experiments. Through various functional experiments, we elucidated the downstream signaling pathways of CTHRC1. Additionally, chromatin immunoprecipitation experiments were used to verify that key transcription factors bind to the CTHRC1 promoter region. CAFs exhibited high senescence status and a strong correlation with cancer stemness in HCC. A novel CAF-senescence-score (CSscore) prognostic model was established for HCC based on 10 genes: CTHRC1, SERPINE1, RNF11, ENG, MARCKSL1, ASAP1, FHL3, LAMB1, CD151, and OLFML2B. The survival prediction performance was validated on TCGA, ICGC, and NODE cohorts. Immune analysis revealed that the CSscore was positively correlated with immunosuppressive immune cell populations, including M2 macrophages and regulatory T cells. Conversely, a negative correlation was observed between the CSscore and anti-tumor immune cells such as CD8 + T cells, dendritic cells, and B cells HCC patients with a low CSscore had a lower tumor mutation burden and showed improved responsiveness to immunotherapy and transarterial chemoembolization. In vitro experiments and bioinformatics analysis further revealed that CTHRC1 was significantly elevated in SCAFs promoted cancer stemness and metastasis via the SRY-box transcription factor 4 (SOX4)-CTHRC1-Notch1 axis in HCC. Our study revealed that SCAFs were strongly correlated with cancer stemness in HCC. A novel machine learning model based on senescent CAF-related genes was constructed to accurately predict prognosis in HCC patients. Furthermore, CTHRC1 was identified as a novel prognostic and therapeutic biomarker to predict poor prognosis in HCC and promote cancer stemness and metastasis through the Notch signaling pathway, with its expression being transcriptionally regulated by SOX4.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mi发布了新的文献求助10
1秒前
可爱的函函应助博大精森采纳,获得10
2秒前
在学一会完成签到,获得积分10
2秒前
xiaoxie完成签到 ,获得积分10
3秒前
李博士完成签到,获得积分10
5秒前
小马甲应助blingbling采纳,获得10
5秒前
粱若之发布了新的文献求助10
5秒前
鳗鱼不尤完成签到,获得积分10
6秒前
泥昵哒耶完成签到 ,获得积分10
8秒前
畅快枕头完成签到 ,获得积分10
8秒前
8秒前
合适的初蓝完成签到 ,获得积分10
10秒前
丢丢发布了新的文献求助10
11秒前
duan完成签到 ,获得积分10
15秒前
一粟完成签到 ,获得积分10
19秒前
19秒前
活泼媚颜发布了新的文献求助10
21秒前
小闫同学完成签到 ,获得积分10
23秒前
珏珏_不是玉玉完成签到 ,获得积分10
25秒前
Mikey完成签到,获得积分20
26秒前
老实的衬衫完成签到 ,获得积分10
28秒前
老迟到的灵煌完成签到,获得积分10
29秒前
32秒前
小蘑菇应助南非的猫采纳,获得10
36秒前
38秒前
monned完成签到 ,获得积分10
40秒前
42秒前
青青完成签到 ,获得积分10
44秒前
贾学敏完成签到 ,获得积分10
47秒前
活泼媚颜完成签到,获得积分10
47秒前
48秒前
认真的访梦完成签到,获得积分20
49秒前
ZDTT完成签到,获得积分10
50秒前
彭雄武完成签到,获得积分10
50秒前
51秒前
加菲丰丰应助朱志伟采纳,获得20
52秒前
54秒前
南非的猫发布了新的文献求助10
57秒前
mark707完成签到,获得积分10
57秒前
97_完成签到,获得积分10
59秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5385328
求助须知:如何正确求助?哪些是违规求助? 4507930
关于积分的说明 14029378
捐赠科研通 4417904
什么是DOI,文献DOI怎么找? 2426743
邀请新用户注册赠送积分活动 1419441
关于科研通互助平台的介绍 1397947