Fusing Domain Knowledge with a Fine-Tuned Large Language Model for Enhanced Molecular Property Prediction

计算机科学 财产(哲学) 领域(数学分析) 人工智能 自然语言处理 数据科学 数学 认识论 数学分析 哲学
作者
Liangxu Xie,Ying-Di Jin,Lei Xu,Shan Chang,Xiaojun Xu
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:21 (14): 6743-6758 被引量:4
标识
DOI:10.1021/acs.jctc.5c00605
摘要

Although large language models (LLMs) have flourished in various scientific applications, their applications in the specific task of molecular property prediction have not reached a satisfactory level, even for the specific chemistry LLMs. This work addresses a highly crucial and significant challenge existing in the field of drug discovery: accurately predicting the molecular properties by effectively leveraging LLMs enhanced with profound domain knowledge. We propose a Knowledge-Fused Large Language Model for dual-Modality (KFLM2) learning for molecular property prediction. The aim is to utilize the capabilities of advanced LLMs, strengthened with specialized knowledge in the field of drug discovery. We identified DeepSeek-R1-Distill-Qwen-1.5B as the optimal base model from three DeepSeek-R1 distilled LLMs and one chemistry LLM named ChemDFM, by fine-tuning with the ZINC and ChEMBL datasets. We obtained the SMILES embeddings from the fine-tuned model and subsequently integrated the embeddings with the molecular graph to leverage complementary information for predicting molecular properties. Finally, we trained the hybrid neural network on the combined dual modality inputs and predicted the molecular properties. Through benchmarking on regression and classification tasks, our proposed method can obtain higher prediction performance for nine out of ten datasets in the downstream regression and classification tasks. Visualization of the output of hidden layers indicates that the combination of the embedding with the molecular graph can offer complementary information to further improve the prediction accuracy compared with either the LLM embedding or the molecular graph inputs. Larger models do not inherently guarantee superior performance; instead, their effectiveness hinges on our ability to leverage relevant knowledge from both pretraining and fine-tuning. Implementing LLMs with domain knowledge would be a rational approach to making precise predictions that could potentially revolutionize the process of drug development and discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
的服务费完成签到,获得积分10
1秒前
Mr鹿发布了新的文献求助10
1秒前
1秒前
俭朴钢笔完成签到,获得积分10
1秒前
娜娜酱油完成签到,获得积分20
1秒前
慕青应助Kong采纳,获得10
1秒前
smt完成签到,获得积分10
2秒前
2秒前
Hello应助拜托拜托采纳,获得10
4秒前
英俊的铭应助fanzi采纳,获得10
4秒前
hs完成签到,获得积分10
5秒前
wd完成签到,获得积分10
5秒前
默问完成签到,获得积分10
6秒前
盛夏发布了新的文献求助10
6秒前
attilio完成签到,获得积分10
7秒前
晴朗同学发布了新的文献求助10
9秒前
洪汉完成签到,获得积分10
9秒前
10秒前
Jasper应助小芦铃采纳,获得10
11秒前
uvofuofy完成签到 ,获得积分10
11秒前
飘逸碧琴发布了新的文献求助10
11秒前
苯环完成签到,获得积分10
11秒前
12秒前
12秒前
Kong完成签到,获得积分10
12秒前
13秒前
13秒前
14秒前
徐梦曦完成签到 ,获得积分10
14秒前
科研通AI6应助先玉梅采纳,获得10
15秒前
15秒前
天天快乐应助小妮采纳,获得10
16秒前
16秒前
Kong发布了新的文献求助10
17秒前
BowieHuang应助Hsy采纳,获得10
18秒前
T_5120发布了新的文献求助10
18秒前
李爱国应助白飞采纳,获得10
19秒前
拜托拜托发布了新的文献求助10
20秒前
鹰少发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5272231
求助须知:如何正确求助?哪些是违规求助? 4429530
关于积分的说明 13789123
捐赠科研通 4307949
什么是DOI,文献DOI怎么找? 2363911
邀请新用户注册赠送积分活动 1359523
关于科研通互助平台的介绍 1322618