Modeling and Experimental Study on Spark-Ignition Engine Using Hydrogen–Methane–Blended Fuel

甲烷 点火系统 SPARK(编程语言) 氢燃料 火花点火发动机 汽车工程 核工程 环境科学 计算机科学 材料科学 航空航天工程 工程类 化学 有机化学 程序设计语言
作者
Shinji Hayashi,Toshiyuki Yamada,Yuya Omori,Kentaro Nakagawa,Kotaro TANAKA
出处
期刊:SAE technical paper series 卷期号:1
标识
DOI:10.4271/2025-01-5056
摘要

<div class="section abstract"><div class="htmlview paragraph">A combustion model of a hydrogen–methane–blended fuel for internal combustion engines is developed and validated. Mixed fuels include hydrogen–methane, octane–methanol, and octane–ethanol blends.</div><div class="htmlview paragraph">To address the complex dependencies of laminar flame speed of hydrogen–methane–blended fuel on temperature, pressure, equivalence ratio, and exhaust gas recirculation (EGR) ratio, a machine learning–based model was constructed. Gaussian process interpolation and polynomial extrapolation were employed to create a comprehensive laminar flame speed map. Additionally, two flame-quenching models, wall quenching and turbulent flame stretching, were introduced to predict unburned hydrocarbons. NO<sub>x</sub> emissions were estimated using the extended Zel’dovich mechanism. The accuracy of these models was verified by comparing numerical simulations with experimental data from single-cylinder engine experiments. Results showed strong agreement for cylinder pressure, heat release rates, and emissions across various hydrogen ratios and engine operating conditions. Across all investigated cases, the model reproduced combustion duration (CA10–90) within ±2.2°CA, with an error ≤11%. Notably, the machine learning–based laminar flame speed model demonstrated high accuracy, even at elevated temperatures and pressures, without requiring additional parameter tuning for turbulence flame model. This study highlights the highly accurate modeling techniques for simulating the combustion of renewable hydrogen–methane blends. The results in this study will contribute to the development of more efficient, lower emission internal combustion engines, and support the transition to sustainable vehicle technology.</div></div>

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
lli发布了新的文献求助10
2秒前
2秒前
小陈总发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
4秒前
riyamao完成签到,获得积分10
4秒前
侯雪晴完成签到 ,获得积分10
5秒前
科研通AI6应助CQZXY采纳,获得10
6秒前
希望天下0贩的0应助xttttttt采纳,获得10
6秒前
平常安发布了新的文献求助10
7秒前
Owen应助Siri采纳,获得10
7秒前
8秒前
陈思洁发布了新的文献求助10
8秒前
张亚博发布了新的文献求助10
8秒前
8秒前
顾心心完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
11秒前
11秒前
我球呢完成签到,获得积分10
11秒前
852发布了新的文献求助10
12秒前
安详的小鸽子完成签到,获得积分10
12秒前
13秒前
reed1220发布了新的文献求助10
13秒前
KaK完成签到,获得积分10
13秒前
Stella应助小哲采纳,获得30
13秒前
Stella应助小哲采纳,获得30
13秒前
Stella应助小哲采纳,获得30
13秒前
袁志振完成签到,获得积分10
14秒前
善良傲珊发布了新的文献求助30
14秒前
LinX完成签到,获得积分10
14秒前
大请第一比巴比完成签到,获得积分10
15秒前
烟花应助张亚博采纳,获得10
15秒前
Hawnyoung完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360857
求助须知:如何正确求助?哪些是违规求助? 4491327
关于积分的说明 13982062
捐赠科研通 4394043
什么是DOI,文献DOI怎么找? 2413707
邀请新用户注册赠送积分活动 1406522
关于科研通互助平台的介绍 1381057