亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Reinforcement learning applied to wastewater treatment process control optimization: Approaches, challenges, and path forward

强化学习 计算机科学 过程(计算) 水准点(测量) 钥匙(锁) 控制(管理) 桥接(联网) 人工智能 机器学习 大地测量学 计算机网络 计算机安全 操作系统 地理
作者
Henry C. Croll,Kaoru Ikuma,Say Kee Ong,Soumik Sarkar
出处
期刊:Critical Reviews in Environmental Science and Technology [Taylor & Francis]
卷期号:53 (20): 1775-1794 被引量:22
标识
DOI:10.1080/10643389.2023.2183699
摘要

AbstractWastewater treatment process control optimization is a complex task in a highly nonlinear environment. Reinforcement learning (RL) is a machine learning technique that stands out for its ability to perform better than human operators for certain high-dimensional, complex decision-making problems, making it an ideal candidate for wastewater treatment process control optimization. However, while RL control optimization strategies have shown potential to provide operational cost savings and effluent quality improvements, RL has proven slow to be adopted among environmental engineers. This review provides an overview of existing RL applications for wastewater treatment control optimization found in literature and evaluates five key challenges that must be addressed prior to widespread adoption: practical RL implementation, managing data, integrating existing process models, building trust in empirical control strategies, and bridging gaps in professional training. Finally, this review discusses potential paths forward to addressing each key challenge, including leveraging soft sensing to improve online data collection, working with process engineers to integrate RL programming with existing industry software, utilizing supervised training to build expert knowledge into the RL agent, and focusing research efforts on known scenarios such as the Benchmark Simulation Model No. 1 to build a robust database of RL agent control optimization results.Keywords: Artificial intelligencecontrol optimizationmachine learningreinforcement learningwastewater treatmentHANDLING EDITORS: Hyunjung Kim and Scott Bradford AcknowledgementsThe authors would like to acknowledge Joshua Buelow for his assistance in evaluating the practical application of some elements covered in this review.Disclosure statementNo potential conflict of interest was reported by the authors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
泽哥发布了新的文献求助10
9秒前
26秒前
泽哥完成签到,获得积分10
31秒前
Tiger完成签到,获得积分10
44秒前
子阅发布了新的文献求助20
1分钟前
Marciu33应助hairgod采纳,获得10
1分钟前
andrele应助科研通管家采纳,获得20
1分钟前
乐观囧完成签到,获得积分20
3分钟前
脑洞疼应助乐观囧采纳,获得10
3分钟前
小路完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
天天快乐应助科研通管家采纳,获得10
3分钟前
andrele应助科研通管家采纳,获得10
5分钟前
香蕉觅云应助科研通管家采纳,获得10
5分钟前
andrele应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
6分钟前
科研通AI5应助James采纳,获得10
6分钟前
啦啊啦啦啦应助柏风华采纳,获得20
6分钟前
CodeCraft应助科研通管家采纳,获得10
7分钟前
bc应助科研通管家采纳,获得20
7分钟前
柏风华完成签到,获得积分10
8分钟前
8分钟前
8分钟前
知行者完成签到 ,获得积分10
8分钟前
Jasmineyfz完成签到 ,获得积分10
9分钟前
andrele应助科研通管家采纳,获得10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
yinlao完成签到,获得积分10
10分钟前
大模型应助南瓜采纳,获得10
10分钟前
bc应助科研通管家采纳,获得30
11分钟前
bc应助科研通管家采纳,获得30
11分钟前
bc应助科研通管家采纳,获得30
11分钟前
11分钟前
南瓜发布了新的文献求助10
11分钟前
12分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 520
Introduction to Strong Mixing Conditions Volumes 1-3 500
Fine Chemicals through Heterogeneous Catalysis 430
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795558
求助须知:如何正确求助?哪些是违规求助? 3340610
关于积分的说明 10300759
捐赠科研通 3057127
什么是DOI,文献DOI怎么找? 1677500
邀请新用户注册赠送积分活动 805424
科研通“疑难数据库(出版商)”最低求助积分说明 762529