Road pothole extraction and safety evaluation by integration of point cloud and images derived from mobile mapping sensors

坑洞(地质) 点云 人工智能 分割 计算机视觉 计算机科学 Canny边缘检测器 工程类 边缘检测 图像处理 图像(数学) 地质学 岩石学
作者
Hangbin Wu,Lianbi Yao,Zeran Xu,Yayun Li,Xinran Ao,Qichao Chen,Zhengning Li,Bin Meng
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:42: 100936-100936 被引量:102
标识
DOI:10.1016/j.aei.2019.100936
摘要

The automatic detection and extraction of road pothole distress is an important issue regarding healthy road structures, monitoring, and maintenance. In this paper, a new algorithm that integrates the mobile point cloud and images is proposed for the detection of road potholes. The algorithm includes three steps: 2D candidate pothole extraction from the images using a deep learning method, 3D candidate pothole extraction via a point cloud, and pothole determination by depth analysis. Because the texture features of the pothole and asphalt or concrete patches greatly differ from those of a normal road, pothole or patch distress images are used to establish a training set and train and test the deep learning system. Subsequently, the 2D candidate pothole is extracted from the images and labeled via the trained DeepLabv3+, a state-of-the-art pixel-wise classification (semantic segmentation) network. The edge of the candidate pothole in the image is then used to establish the relationship between the mobile point cloud and images. The original road point cloud around the edge of the candidate pothole is categorized into two groups, that is, interior and exterior points, according to the relationship between the point cloud and images. The exterior points are used to fit the road plane and calculate the accurate 3D shape of the candidate potholes. Finally, the interior points of a candidate pothole are used to analyze the depth distribution to determine if the candidate pothole is a pothole or patch. To verify the proposed method, two cases, including real and simulation cases, are selected. The real case is an expressway in Shanghai with a length of 26.4 km. Based on the proposed method, 77 candidate potholes are extracted by the DeepLabv3+ system; 49 potholes and 28 patches are finally filtered. The affected lanes and pothole locations are analyzed. The simulation case is selected to verify the geometric accuracy of the detected potholes. The results show that the mean accuracy of the detected potholes is ∼1.5–2.8 cm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助旋风大角牛采纳,获得10
刚刚
福桃完成签到,获得积分10
刚刚
汉堡包应助勤恳的宛菡采纳,获得10
刚刚
safa完成签到,获得积分10
1秒前
科研通AI5应助echo采纳,获得10
1秒前
科研通AI5应助大吉采纳,获得10
1秒前
dlm发布了新的文献求助10
2秒前
老实的小兔子完成签到,获得积分20
2秒前
再慕完成签到,获得积分10
2秒前
SciGPT应助Three采纳,获得10
2秒前
金金完成签到,获得积分10
3秒前
3秒前
汕头凯奇完成签到,获得积分10
4秒前
4秒前
laii完成签到,获得积分10
4秒前
fisker完成签到,获得积分10
5秒前
5秒前
5秒前
木木发布了新的文献求助20
5秒前
liuliu发布了新的文献求助50
5秒前
5秒前
科研通AI5应助dara997采纳,获得10
6秒前
浙江嘉兴完成签到,获得积分10
6秒前
不器完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
7秒前
丽颖发布了新的文献求助10
8秒前
有梦想的人不睡觉完成签到,获得积分10
8秒前
M1有光发布了新的文献求助10
8秒前
vvvvvv应助一树面包人采纳,获得10
9秒前
科研dog发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
何仁杰发布了新的文献求助10
10秒前
Chen应助XPN采纳,获得20
10秒前
乐乐应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
On translated images, stereotypes and disciplines 200
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834256
求助须知:如何正确求助?哪些是违规求助? 3376847
关于积分的说明 10495379
捐赠科研通 3096271
什么是DOI,文献DOI怎么找? 1704904
邀请新用户注册赠送积分活动 820296
科研通“疑难数据库(出版商)”最低求助积分说明 771940