Cascaded atrous convolution and spatial pyramid pooling for more accurate tumor target segmentation for rectal cancer radiotherapy

放射治疗 棱锥(几何) 卷积(计算机科学) 联营 结直肠癌 分割 医学 癌症 计算机科学 人工智能 核医学 数学 放射科 内科学 几何学 人工神经网络
作者
Kuo Men,Pamela Boimel,James Janopaul‐Naylor,Haoyu Zhong,Mi Huang,H. Geng,Chingyun Cheng,Yong Fan,John P. Plastaras,Edgar Ben‐Josef,Ying Xiao
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:63 (18): 185016-185016 被引量:55
标识
DOI:10.1088/1361-6560/aada6c
摘要

Convolutional neural networks (CNNs) have become the state-of-the-art method for medical segmentation. However, repeated pooling and striding operations reduce the feature resolution, causing loss of detailed information. Additionally, tumors of different patients are of different sizes. Thus, small tumors may be ignored while big tumors may exceed the receptive fields of convolutions. The purpose of this study is to further improve the segmentation accuracy using a novel CNN (named CAC–SPP) with cascaded atrous convolution (CAC) and a spatial pyramid pooling (SPP) module. This work is the first attempt at applying SPP for segmentation in radiotherapy. We improved the network based on ResNet-101 yielding accuracy gains from a greatly increased depth. We added CAC to extract a high-resolution feature map while maintaining large receptive fields. We also adopted a parallel SPP module with different atrous rates to capture the multi-scale features. The performance was compared with the widely adopted U-Net and ResNet-101 with independent segmentation of rectal tumors for two image sets, separately: (1) 70 T2-weighted MR images and (2) 100 planning CT images. The results show that the proposed CAC–SPP outperformed the U-Net and ResNet-101 for both image sets. The Dice similarity coefficient values of CAC–SPP were 0.78 ± 0.08 and 0.85 ± 0.03, respectively, which were higher than those of U-Net (0.70 ± 0.11 and 0.82 ± 0.04) and ResNet-101 (0.76 ± 0.10 and 0.84 ± 0.03). The segmentation speed of CAC–SPP was comparable with ResNet-101, but about 36% faster than U-Net. In conclusion, the proposed CAC–SPP, which could extract high-resolution features with large receptive fields and capture multi-scale context yields, improves the accuracy of segmentation performance for rectal tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoma发布了新的文献求助10
1秒前
2秒前
明芬发布了新的文献求助10
3秒前
小福发布了新的文献求助10
3秒前
4秒前
wy.he完成签到,获得积分0
4秒前
HH应助签花采纳,获得10
4秒前
彭于晏应助kento采纳,获得30
4秒前
延文星完成签到,获得积分10
6秒前
6秒前
250发布了新的文献求助10
6秒前
漫天飞雪_寒江孤影完成签到 ,获得积分10
7秒前
7秒前
桂皮完成签到,获得积分10
8秒前
8秒前
延文星发布了新的文献求助10
9秒前
研友_VZG7GZ应助大方万仇采纳,获得10
11秒前
wwj1009完成签到 ,获得积分10
11秒前
田様应助坦率的嫣娆采纳,获得10
12秒前
浮华发布了新的文献求助10
12秒前
俊逸若之发布了新的文献求助10
13秒前
宁宁发布了新的文献求助10
14秒前
shenmolianzzz完成签到,获得积分10
17秒前
keke完成签到,获得积分20
17秒前
Pony完成签到,获得积分10
17秒前
18秒前
传奇3应助刘金帅采纳,获得10
18秒前
科研通AI2S应助VitoLi采纳,获得10
18秒前
腼腆的冷玉完成签到,获得积分10
19秒前
cc完成签到,获得积分10
19秒前
HUYAOWEI完成签到,获得积分10
20秒前
23秒前
24秒前
鲁世键发布了新的文献求助10
25秒前
paul发布了新的文献求助10
26秒前
27秒前
小二郎应助deng采纳,获得30
30秒前
Masaccy完成签到,获得积分10
30秒前
31秒前
TT发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
National standards & grade-level outcomes for K-12 physical education 400
Vertebrate Palaeontology, 5th Edition 210
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4816833
求助须知:如何正确求助?哪些是违规求助? 4127186
关于积分的说明 12771967
捐赠科研通 3866365
什么是DOI,文献DOI怎么找? 2127627
邀请新用户注册赠送积分活动 1148526
关于科研通互助平台的介绍 1044001