Entropy measures for early detection of bearing faults

熵(时间箭头) 小波 参数统计 希尔伯特-黄变换 振动 计算机科学 光谱密度 模式识别(心理学) 波形 算法 振幅 数学 人工智能 白噪声 统计 声学 物理 电信 量子力学 雷达
作者
Gustavo de Novaes Pires Leite,Alex Maurício Araújo,Pedro Rosas,Tatijana Stošić,Borko Stošić
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier BV]
卷期号:514: 458-472 被引量:45
标识
DOI:10.1016/j.physa.2018.09.052
摘要

This paper investigates the performance of the 12 entropy-based features for the monitoring and detection of bearing faults. These entropy measures were proposed both in time, frequency and time–frequency domain. Probability mass function (PMF) was extracted from the time waveforms using four different methods: (i) via power spectral density, (ii) via ordinal pattern distribution, (iii) via wavelet packet tree and iv) ensemble empirical mode decomposition. Three different entropy measures were used in the article: (i) Shannon entropy, (ii) Rényi entropy and (iii) Jensen–Rényi divergence. A new bearing produces a vibration time series characterised by random noise without prominent periodic content. As soon as a fault develops, impulses are produced, what excites structural resonances generating a train of impulse responses. As defect grows, it becomes a distributed fault, and then no sharp impulses are generated but rather an amplitude modulated random noise signal. The proposed methodology has been applied to detect bearing faults by the analysis of two real bearing datasets, from run-to-failure experiments. Three bearings that presented different defects in the test (inner race fault, rolling elements fault and outer race fault) were analysed to validate the performance of the entropy-based features. The modified Z-score has been implemented and used as an index to detect changes of the entropy features. The results clearly demonstrate that the proposed approach represents a valuable non-parametric tool for early detection of anomalies in bearings vibration signals.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
黄俊发布了新的文献求助10
1秒前
陆冰之发布了新的文献求助10
3秒前
沉静盼易发布了新的文献求助10
4秒前
Belinda发布了新的文献求助10
4秒前
香蕉觅云应助宝乾坤采纳,获得10
5秒前
粗心的邴发布了新的文献求助10
6秒前
齐小东发布了新的文献求助20
8秒前
黄俊完成签到,获得积分10
9秒前
10秒前
星辰大海应助任无施采纳,获得10
10秒前
CooL完成签到 ,获得积分10
11秒前
Hello应助光的本质采纳,获得10
11秒前
yj发布了新的文献求助10
12秒前
8R60d8应助超级万声采纳,获得20
13秒前
上官若男应助糟糕的铁锤采纳,获得10
13秒前
gattina完成签到,获得积分10
15秒前
15秒前
Belinda完成签到,获得积分10
16秒前
任无施完成签到,获得积分10
16秒前
wanci应助wzcxysbb666采纳,获得10
18秒前
21秒前
NatureLee发布了新的文献求助10
24秒前
轻松沛菡完成签到,获得积分10
24秒前
25秒前
过时的洋葱完成签到 ,获得积分10
25秒前
setfgrew发布了新的文献求助10
27秒前
BK驳回了PA应助
27秒前
28秒前
小赵同学完成签到,获得积分10
28秒前
宝乾坤发布了新的文献求助10
28秒前
Orange应助Jerry采纳,获得10
30秒前
爆米花应助water333采纳,获得30
30秒前
30秒前
31秒前
PA应助susu福福采纳,获得10
31秒前
RuoxuanWang完成签到 ,获得积分10
32秒前
米线关注了科研通微信公众号
32秒前
Nathan完成签到,获得积分10
32秒前
慧仔53完成签到,获得积分10
33秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845038
求助须知:如何正确求助?哪些是违规求助? 3387231
关于积分的说明 10548456
捐赠科研通 3107954
什么是DOI,文献DOI怎么找? 1712287
邀请新用户注册赠送积分活动 824304
科研通“疑难数据库(出版商)”最低求助积分说明 774706