Entropy measures for early detection of bearing faults

熵(时间箭头) 小波 参数统计 希尔伯特-黄变换 振动 计算机科学 光谱密度 模式识别(心理学) 波形 算法 振幅 数学 人工智能 白噪声 统计 声学 物理 电信 量子力学 雷达
作者
Gustavo de Novaes Pires Leite,Alex Maurício Araújo,Pedro Rosas,Tatijana Stošić,Borko Stošić
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier BV]
卷期号:514: 458-472 被引量:45
标识
DOI:10.1016/j.physa.2018.09.052
摘要

This paper investigates the performance of the 12 entropy-based features for the monitoring and detection of bearing faults. These entropy measures were proposed both in time, frequency and time–frequency domain. Probability mass function (PMF) was extracted from the time waveforms using four different methods: (i) via power spectral density, (ii) via ordinal pattern distribution, (iii) via wavelet packet tree and iv) ensemble empirical mode decomposition. Three different entropy measures were used in the article: (i) Shannon entropy, (ii) Rényi entropy and (iii) Jensen–Rényi divergence. A new bearing produces a vibration time series characterised by random noise without prominent periodic content. As soon as a fault develops, impulses are produced, what excites structural resonances generating a train of impulse responses. As defect grows, it becomes a distributed fault, and then no sharp impulses are generated but rather an amplitude modulated random noise signal. The proposed methodology has been applied to detect bearing faults by the analysis of two real bearing datasets, from run-to-failure experiments. Three bearings that presented different defects in the test (inner race fault, rolling elements fault and outer race fault) were analysed to validate the performance of the entropy-based features. The modified Z-score has been implemented and used as an index to detect changes of the entropy features. The results clearly demonstrate that the proposed approach represents a valuable non-parametric tool for early detection of anomalies in bearings vibration signals.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡卡罗特完成签到,获得积分10
刚刚
Sponge发布了新的文献求助10
刚刚
111完成签到 ,获得积分10
刚刚
3秒前
Vegh举报chen求助涉嫌违规
3秒前
GYW发布了新的文献求助10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
Orange应助科研小白采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
3秒前
打打应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
小青椒应助科研通管家采纳,获得20
3秒前
浮游应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得20
3秒前
yibiy完成签到,获得积分10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
4秒前
大川应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
KEHUGE完成签到,获得积分10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
研究生end应助科研通管家采纳,获得20
4秒前
4秒前
4秒前
4秒前
Sea_U应助科研通管家采纳,获得10
4秒前
zcl应助海绵宝宝采纳,获得20
4秒前
linxi完成签到,获得积分10
4秒前
汉堡包应助llllll采纳,获得10
5秒前
可爱的函函应助7890733采纳,获得10
5秒前
5秒前
gffh完成签到,获得积分10
6秒前
清蒸蛋发布了新的文献求助20
7秒前
科研通AI5应助雪白机器猫采纳,获得10
7秒前
害羞书易完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
ESDU TM 218 An example of air data pressure correction with a dependency on engine power settings 400
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5036407
求助须知:如何正确求助?哪些是违规求助? 4269165
关于积分的说明 13309478
捐赠科研通 4080061
什么是DOI,文献DOI怎么找? 2231912
邀请新用户注册赠送积分活动 1239983
关于科研通互助平台的介绍 1166040