MR-based artificial intelligence model to assess response to therapy in locally advanced rectal cancer

医学 结直肠癌 医学物理学 放射科 癌症治疗 癌症 内科学
作者
Riccardo Ferrari,C. Mancini-Terracciano,C. Voena,Marco Rengo,Marta Zerunian,Andrea Ciardiello,S Grasso,Valerio Mare,R. Paramatti,A. Russomando,R. Santacesaria,A. Satta,E. Solfaroli Camillocci,R. Faccini,Andrea Laghi
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:118: 1-9 被引量:79
标识
DOI:10.1016/j.ejrad.2019.06.013
摘要

To develop and validate an Artificial Intelligence (AI) model based on texture analysis of high-resolution T2 weighted MR images able 1) to predict pathologic Complete Response (CR) and 2) to identify non-responders (NR) among patients with locally-advanced rectal cancer (LARC) after receiving neoadjuvant chemoradiotherapy (CRT).Fifty-five consecutive patients with LARC were retrospectively enrolled in this study. Patients underwent 3 T Magnetic Resonance Imaging (MRI) acquiring T2-weighted images before, during and after CRT. All patients underwent complete surgical resection and histopathology was the gold standard. Textural features were automatically extracted using an open-source software. A sub-set of statistically significant textural features was selected and two AI models were built by training a Random Forest (RF) classifier on 28 patients (training cohort). Model performances were estimated on 27 patients (validation cohort) using a ROC curve and a decision curve analysis.Sixteen of 55 patients achieved CR. The AI model for CR classification showed good discrimination power with mean area under the receiver operating curve (AUC) of 0.86 (95% CI: 0.70, 0.94) in the validation cohort. The discriminatory power for the NR classification showed a mean AUC of 0.83 (95% CI: 0.71,0.92). Decision curve analysis confirmed higher net patient benefit when using AI models compared to standard-of-care.AI models based on textural features of MR images of patients with LARC may help to identify patients who will show CR at the end of treatment and those who will not respond to therapy (NR) at an early stage of the treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助科研通管家采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
子凡应助科研通管家采纳,获得10
刚刚
子凡应助科研通管家采纳,获得10
刚刚
田様应助科研通管家采纳,获得10
1秒前
zhao完成签到,获得积分10
3秒前
Benny发布了新的文献求助10
3秒前
王冬雪发布了新的文献求助10
6秒前
小于完成签到,获得积分10
6秒前
科研通AI5应助kydd采纳,获得10
7秒前
9秒前
xutingfeng发布了新的文献求助10
12秒前
12秒前
酷波er应助chyvayne采纳,获得10
13秒前
13秒前
王冬雪完成签到,获得积分10
15秒前
兔子不吃胡萝卜完成签到 ,获得积分10
17秒前
xutingfeng完成签到,获得积分10
18秒前
19秒前
19秒前
iu发布了新的文献求助10
20秒前
21秒前
21秒前
zzw完成签到 ,获得积分10
22秒前
Desamin发布了新的文献求助10
24秒前
24秒前
Lucas应助Benny采纳,获得10
25秒前
玩命的毛衣完成签到 ,获得积分10
26秒前
chyvayne发布了新的文献求助10
27秒前
动人的剑完成签到,获得积分10
27秒前
华仔应助dd采纳,获得10
29秒前
shapvalue发布了新的文献求助10
30秒前
无花果应助单纯的又菱采纳,获得30
30秒前
Desamin完成签到,获得积分10
30秒前
shalom完成签到,获得积分10
31秒前
32秒前
chyvayne完成签到,获得积分10
32秒前
健忘飞风完成签到,获得积分10
33秒前
茹茹完成签到 ,获得积分10
35秒前
深情安青应助绿色心情采纳,获得10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781766
求助须知:如何正确求助?哪些是违规求助? 3327359
关于积分的说明 10230631
捐赠科研通 3042226
什么是DOI,文献DOI怎么找? 1669897
邀请新用户注册赠送积分活动 799391
科研通“疑难数据库(出版商)”最低求助积分说明 758792