Photocatalytic CO2 reduction activity of Z-scheme CdS/CdWO4 catalysts constructed by surface charge directed selective deposition of CdS

光催化 沉积(地质) 材料科学 纳米颗粒 电子转移 电荷(物理) 载流子 纳米技术 化学工程 催化作用 光化学 化学 光电子学 物理 生物 工程类 古生物学 量子力学 生物化学 沉积物
作者
Yanyang Li,Zhihe Wei,Jin-Bin Fan,Zhongjun Li,Hong‐Chang Yao
出处
期刊:Applied Surface Science [Elsevier]
卷期号:483: 442-452 被引量:63
标识
DOI:10.1016/j.apsusc.2019.03.333
摘要

Rational construction of Z-scheme photocatalysts and deep exploration of Z-scheme transfer mechanism are highly desirable for improving the activity of CO2 reduction photocatalysts but remains a significant challenge. Herein, we synthesized a series of heterostructured CdS/CdWO4 materials by selectively depositing CdS nanoparticles on the edges of CdWO4 nanoplates. Selective deposition mechanism of CdS and the formation of the composites were studied in detail. The photocatalytic CO2 reduction activities of the synthesized materials were investigated and the results show that CdS/CdWO4 materials exhibit higher photocatalytic activity than pure CdS and CdWO4. We suggest that the enhanced photoreduction CO2 activity is attributed to Z-scheme charge transfer mechanism based on the analyses of the products of CO2 reduction and the band structure of CdS and CdWO4. Kelvin probe force microscope on CdWO4 nanoplates shows that the photogenerated electrons, driven by electric field forces, would migrate to the edge of CdWO4. The charge transfer direction, coupling with the selective deposition of CdS nanoparticles, facilitates CdS/CdWO4 composites following Z-scheme transfer. In-situ Pt photodeposition tests provide strong experimental support to the charge transfer mechanism. The results gained herein are expected to provide some useful insights into the structure-oriented rational design of Z-scheme photocatalysts for CO2 reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贵月完成签到,获得积分10
1秒前
年年完成签到,获得积分10
1秒前
1秒前
十七发布了新的文献求助10
2秒前
菜狗一只啊完成签到 ,获得积分10
2秒前
2秒前
bb完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
4秒前
文静的夜梅应助科研小白采纳,获得10
4秒前
机灵凌雪发布了新的文献求助10
5秒前
6秒前
CodeCraft应助wise111采纳,获得10
8秒前
9秒前
羽幻一惜发布了新的文献求助10
9秒前
12秒前
Lojong发布了新的文献求助10
12秒前
Hale完成签到,获得积分0
12秒前
乐乐应助超帅的灭龙采纳,获得10
13秒前
小蘑菇应助超帅的灭龙采纳,获得10
13秒前
科研通AI2S应助超帅的灭龙采纳,获得10
13秒前
Akim应助超帅的灭龙采纳,获得10
13秒前
烟花应助超帅的灭龙采纳,获得10
13秒前
大气白亦发布了新的文献求助30
14秒前
搜集达人应助pka采纳,获得10
14秒前
15秒前
善学以致用应助羽幻一惜采纳,获得10
16秒前
16秒前
17秒前
灵巧的夕阳完成签到,获得积分10
19秒前
wise111发布了新的文献求助10
21秒前
2220190143发布了新的文献求助10
21秒前
AI_Medical完成签到,获得积分10
23秒前
23秒前
苹果羿完成签到,获得积分20
24秒前
无花果应助硕大的肌肉采纳,获得10
24秒前
Eureka完成签到,获得积分10
24秒前
科目三应助硕大的肌肉采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5290304
求助须知:如何正确求助?哪些是违规求助? 4441692
关于积分的说明 13827995
捐赠科研通 4324297
什么是DOI,文献DOI怎么找? 2373618
邀请新用户注册赠送积分活动 1368975
关于科研通互助平台的介绍 1332950