A Training Data Set Cleaning Method by Classification Ability Ranking for the $k$ -Nearest Neighbor Classifier

计算机科学 分类器(UML) k-最近邻算法 训练集 模式识别(心理学) 人工智能 数据挖掘 机器学习
作者
Yidi Wang,Zhibin Pan,Yiwei Pan
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:31 (5): 1544-1556 被引量:48
标识
DOI:10.1109/tnnls.2019.2920864
摘要

The k -nearest neighbor (KNN) rule is a successful technique in pattern classification due to its simplicity and effectiveness. As a supervised classifier, KNN classification performance usually suffers from low-quality samples in the training data set. Thus, training data set cleaning (TDC) methods are needed for enhancing the classification accuracy by cleaning out noisy, or even wrong, samples in the original training data set. In this paper, we propose a classification ability ranking (CAR)-based TDC method to improve the performance of a KNN classifier, namely CAR-based TDC method. The proposed classification ability function ranks a training sample in terms of its contribution to correctly classify other training samples as a KNN through the leave-one-out (LV1) strategy in the cleaning stage. The training sample that likely misclassifies the other samples during the KNN classifications according to the LV1 strategy is considered to have lower classification ability and will be cleaned out from the original training data set. Extensive experiments, based on ten real-world data sets, show that the proposed CAR-based TDC method can significantly reduce the classification error rates of KNN-based classifiers, while reducing computational complexity thanks to a smaller cleaned training data set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
安好完成签到,获得积分20
2秒前
2秒前
qxx发布了新的文献求助10
3秒前
ljs完成签到,获得积分10
3秒前
小新完成签到,获得积分10
4秒前
yyyyyy完成签到,获得积分10
4秒前
研友_VZG7GZ应助iuiuily采纳,获得10
5秒前
5秒前
南京的上海路完成签到,获得积分20
5秒前
5秒前
收拾收拾发布了新的文献求助30
6秒前
MW发布了新的文献求助10
6秒前
Hello应助汪汪队立大功采纳,获得10
6秒前
RN发布了新的文献求助10
6秒前
江洋大盗发布了新的文献求助10
6秒前
wph完成签到,获得积分10
7秒前
xzc完成签到,获得积分10
7秒前
yy完成签到,获得积分10
7秒前
7秒前
河河完成签到,获得积分10
8秒前
万元帅发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
9秒前
英姑应助leoleo采纳,获得10
9秒前
biomds完成签到,获得积分10
10秒前
Owen应助十戈橙采纳,获得30
10秒前
狂野白梅完成签到,获得积分10
10秒前
zhaoty完成签到,获得积分10
11秒前
judy891zhu发布了新的文献求助10
11秒前
11秒前
11秒前
猪猪hero应助开会胡萝卜采纳,获得10
11秒前
12秒前
12秒前
zxy发布了新的文献求助10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3932845
求助须知:如何正确求助?哪些是违规求助? 3477730
关于积分的说明 10998668
捐赠科研通 3208123
什么是DOI,文献DOI怎么找? 1772670
邀请新用户注册赠送积分活动 859997
科研通“疑难数据库(出版商)”最低求助积分说明 797425