核(代数)
树核
人工智能
计算机科学
径向基函数核
多项式核
支持向量机
核方法
深度学习
分布的核嵌入
人工神经网络
字符串内核
计算
机器学习
模式识别(心理学)
算法
数学
离散数学
作者
Youngmin Cho,Lawrence K. Saul
出处
期刊:Neural Information Processing Systems
日期:2009-12-07
卷期号:22: 342-350
被引量:535
摘要
We introduce a new family of positive-definite kernel functions that mimic the computation in large, multilayer neural nets. These kernel functions can be used in shallow architectures, such as support vector machines (SVMs), or in deep kernel-based architectures that we call multilayer kernel machines (MKMs). We evaluate SVMs and MKMs with these kernel functions on problems designed to illustrate the advantages of deep architectures. On several problems, we obtain better results than previous, leading benchmarks from both SVMs with Gaussian kernels as well as deep belief nets.
科研通智能强力驱动
Strongly Powered by AbleSci AI