Highly accurate prediction of viscosity of epoxy resin and diluent at various temperatures utilizing machine learning

环氧树脂 粘度 缩水甘油醚 稀释剂 材料科学 计算机科学 双酚A 胶粘剂 生物系统 复合材料 工艺工程 算法 有机化学 化学 生物 工程类 图层(电子)
作者
Haoke Qiu,Wanchen Zhao,Hanwen Pei,Junpeng Li,Zhao‐Yan Sun
出处
期刊:Polymer [Elsevier BV]
卷期号:256: 125216-125216 被引量:11
标识
DOI:10.1016/j.polymer.2022.125216
摘要

Obtaining quantitative structure-property relationships (QSPR) is crucial for the development of new materials, which also helps to reduce the number of trial and improve the efficiency for both research and development. The viscosity of epoxy resin is vital for processing and application, for example, low viscosity can be used as coatings while high viscosity as adhesives. However, due to the wide variety of epoxy resin and its additives, the resin with target viscosities cannot be easily designed and the viscosity cannot be precisely predicted directly from massive formulation of epoxy resin. In the present work, we propose a simple strategy to accurately predict the viscosity of epoxy resin for a wide range of epoxy resins leveraging machine learning (ML) and deep learning (DL). The coarse-grained (CG) methodology is applied to the dataset first and then the dataset is categorized via K-Means clustering algorithm. A high-precision prediction is thus achieved with R2 up to 1.00 among 10 of the classes on train sets. To build a more generalized model without clustering, we compare 5 ML and DL models to select the optimal model under multidimensional evaluations. A prediction model with R2 of 0.96 on the test set is obtained using TensorFlow framework. We further employ our model to predict the viscosity of a commonly used diglycidyl ether of bisphenol-A (DGEBA) epoxy with different diluent proportions at different temperatures, and then we verify the predicted data by using several empirical viscosity equations. As a consequence, the activation energy of DGEBA can be estimated from the relation between viscosity and temperature, and the calculated value (56.40 kJ-mol−1) agrees well with the experimental data (58.16 kJ-mol−1). Our work reveals the great potential of machine learning methods in the prediction of QSPR in materials science.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
科研通AI5应助Suyi采纳,获得10
2秒前
泰迪的梦想完成签到,获得积分20
3秒前
Lucas应助Lyue采纳,获得10
3秒前
5秒前
开放筝发布了新的文献求助30
6秒前
张羊羔完成签到 ,获得积分10
7秒前
小果子完成签到,获得积分10
8秒前
刘桔发布了新的文献求助10
8秒前
田様应助月亮夏的夏采纳,获得10
9秒前
NFF应助学术渣渣灰采纳,获得10
9秒前
山魈完成签到 ,获得积分10
10秒前
矿泉水发布了新的文献求助10
11秒前
12秒前
zbz完成签到,获得积分10
14秒前
科研通AI5应助感动的笑翠采纳,获得10
15秒前
小马完成签到,获得积分20
15秒前
16秒前
烟花应助sunzhuxi采纳,获得10
16秒前
赘婿应助Lyue采纳,获得10
17秒前
扑火退羽完成签到,获得积分10
18秒前
zbz发布了新的文献求助10
19秒前
高高应助钟迪采纳,获得10
20秒前
活力千青完成签到,获得积分10
20秒前
彭于晏应助LIIII采纳,获得10
20秒前
21秒前
25秒前
情怀应助ss采纳,获得10
25秒前
25秒前
平常的毛豆应助矿泉水采纳,获得10
27秒前
烟花应助开放筝采纳,获得30
27秒前
果果发布了新的文献求助10
30秒前
KristenStewart完成签到,获得积分10
31秒前
NexusExplorer应助Lyue采纳,获得10
31秒前
31秒前
LIIII发布了新的文献求助10
32秒前
金桔完成签到,获得积分10
32秒前
32秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818711
求助须知:如何正确求助?哪些是违规求助? 3361803
关于积分的说明 10414228
捐赠科研通 3080117
什么是DOI,文献DOI怎么找? 1693738
邀请新用户注册赠送积分活动 814554
科研通“疑难数据库(出版商)”最低求助积分说明 768313