医学
金黄色葡萄球菌
病因学
内科学
葡萄球菌感染
脊柱炎
强直性脊柱炎
细菌
遗传学
生物
作者
J.W. Chen,Kun Feng,Qianfei Liu,Ping Luo,Tao Li,Chaofeng Guo,Qingfang Zhang,Guang Zhang,Xiheng Hu,Qile Gao
标识
DOI:10.1097/js9.0000000000003035
摘要
Rapid etiological identification of Staphylococcus aureus in spinal infections can be challenging, often delaying targeted therapy. We developed a machine learning model leveraging XGBoost to predict S. aureus etiology in spinal infections directly from routine laboratory indicators. The XGBoost model demonstrated superior predictive performance (AUC 0.812; 95% CI: 0.728-0.896) among four algorithms, with SHAP analysis identifying D-dimer, Monocyte Percentage, Albumin, and Alanine Aminotransferase as crucial predictors.
科研通智能强力驱动
Strongly Powered by AbleSci AI