电合成
过氧化氢
化学
催化作用
电解质
质子
固态
电化学
组合化学
有机化学
电极
物理化学
物理
量子力学
作者
Jun Wang,Junheng Huang,Chunguang Jia,Wenxing Chen,Junxiang Chen,S. Lin,Yangjie Liu,Kai Chen,Yiqi Liang,Ci Su,Zhenhai Wen
标识
DOI:10.1002/ange.202510645
摘要
Abstract Polymer‐based solid electrolyte (SE) cells promise electrochemical synthesis of pure hydrogen peroxide (H 2 O 2 ), yet the protonation mechanisms governing the two‐electron oxygen reduction reaction (2e − ‐ORR) remain unclear when using pure water as the proton source. Both Langmuir–Hinshelwood (LH, surface *H‐mediated) and Eley–Rideal (ER, water‐derived proton‐coupled) pathways are theoretically plausible, but their practical dominance under SE conditions lacks experimental validation. Herein, we designed a hierarchical Ni─N 2 ─C─O single‐atom/NiO nanocluster co‐decorated porous carbon nanosheet catalyst (NiSA‐NiO/pCNs) that achieved a Faradaic efficiency of 97% and a H 2 O 2 partial current density of 356 mA cm⁻ 2 (equivalent to 6.6 mmol cm −2 h −1 production rate) in a porous SE cell. Analysis of reaction intermediates and the local pH using in situ Raman spectroscopy, kinetic isotope effect, and density functional theory simulations showed the critical role of NiO nanoclusters in tuning the protonation pathway: NiO activates the ER mechanism via fast proton transfer from water dissociation, whereas NiSA/pCNs without NiO preferentially follow the LH mechanism through surface‐adsorbed *H intermediates from interfacial transferred proton. These findings establish a catalyst design principle for proton transfer control in solid‐state H 2 O 2 electrosynthesis.
科研通智能强力驱动
Strongly Powered by AbleSci AI