共轭梯度法
数学优化
计算机科学
行搜索
文件夹
选择(遗传算法)
趋同(经济学)
非线性共轭梯度法
投资组合优化
背景(考古学)
最优化问题
梯度法
数学
算法
人工智能
梯度下降
人工神经网络
经济增长
生物
金融经济学
计算机安全
古生物学
经济
半径
作者
Nasiru Salihu,Ibrahim Mohammed Sulaiman,P. Kaelo,Issam A. R. Moghrabi,Elissa Nadia Madi
出处
期刊:PLOS ONE
[Public Library of Science]
日期:2025-04-25
卷期号:20 (4): e0320416-e0320416
标识
DOI:10.1371/journal.pone.0320416
摘要
The spectral conjugate gradient (SCG) technique is highly efficient in addressing large-scale unconstrained optimization challenges. This paper presents a structured SCG approach that combines the Quasi-Newton direction and an extended conjugacy condition. Drawing inspiration from the Fletcher-Reeves conjugate gradient (CG) parameter, this method is tailored to improve the general structure of the CG approach. We rigorously establish the global convergence of the algorithm for general functions, using criteria from a Wolfe-line search. Numerical experiments performed on some unconstrained optimization problems highlight the superiority of this new algorithm over certain CG methods with similar characteristics. In the context of portfolio selection, the proposed method extended to address the problem of stock allocation, ensuring optimized returns while minimizing risks. Empirical evaluations demonstrate the efficiency of the method, demonstrating significant improvements in computational efficiency and optimization outcomes.
科研通智能强力驱动
Strongly Powered by AbleSci AI