Wear prediction and reliability analysis of main bearing under multi-source uncertainties

可靠性(半导体) 方位(导航) 可靠性工程 计算机科学 法律工程学 工程类 人工智能 物理 量子力学 功率(物理)
作者
Zhaohui Xu,Yi Cui,Lining Gao,Shuo Liu,Bohong Zhang,Xinqi Qiao
标识
DOI:10.1177/09544070241313015
摘要

The main bearing wear is often affected by multi-source uncertainties, which also challenges the prediction of bearing wear. In this paper, a method of main bearing wear prediction and reliability analysis under multi-source uncertainties is proposed. Firstly, the multi-flexible body friction dynamics model of the main bearing is established, in which the mixed lubrication behavior of the main bearing is described by the average Reynolds equation and Greenwood-Tripp rough contact theory. Then, based on Latin hypercube sampling, the sample data of the key uncertainties of the main bearing are obtained and substituted into the multi-flexible body friction dynamics model, thus the wear data of the main bearing are obtained, and the distribution characteristics of the wear of the main bearing are obtained through statistics. Finally, the relationship between multi-source uncertainties and wear data is established based on the surrogate model, and the reliability data and lifespan of the main bearing are obtained based on the interference theory. Through the analysis, it is found that: (1) The maximum cyclic wear depth of the flexible body model is about 2.81 times that of the rigid body model. (2) The calculation error of the main bearing wear prediction surrogate model is about 10%. (3) The maximum cyclic wear depth under multi-source uncertainties satisfies the three-parameter Weibull distribution. (4) Under the influence of multi-source uncertainty, the B10 life of main bearing is 1.64 × 10 4 h.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
叶一只发布了新的文献求助10
1秒前
小黄发布了新的文献求助10
1秒前
gyh发布了新的文献求助10
1秒前
3秒前
jia完成签到,获得积分10
3秒前
露露发布了新的文献求助10
3秒前
lddd发布了新的文献求助10
4秒前
qweasdzxcqwe发布了新的文献求助10
4秒前
llll发布了新的文献求助10
4秒前
墨鱼完成签到,获得积分10
4秒前
媛羽厨发布了新的文献求助10
4秒前
5秒前
LC完成签到,获得积分10
6秒前
Ava应助辣椒离我远点采纳,获得10
6秒前
sfafasfsdf发布了新的文献求助10
6秒前
Spyderman完成签到,获得积分10
8秒前
8秒前
8秒前
焰火青年发布了新的文献求助10
8秒前
windli发布了新的文献求助10
8秒前
无私半烟发布了新的文献求助10
9秒前
所所应助墨鱼采纳,获得10
9秒前
wjx发布了新的文献求助10
10秒前
彭于晏应助Enid采纳,获得10
10秒前
11秒前
11秒前
11秒前
Akim应助11采纳,获得10
11秒前
MoriZhang完成签到,获得积分10
11秒前
lddd完成签到,获得积分10
12秒前
wanci应助清爽海云采纳,获得10
12秒前
整齐乐巧完成签到,获得积分10
13秒前
成太发布了新的文献求助30
14秒前
youknowdcf发布了新的文献求助10
15秒前
小鲁发布了新的文献求助30
15秒前
15秒前
善学以致用应助qweasdzxcqwe采纳,获得10
16秒前
今后应助叶叶叶采纳,获得10
16秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 760
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4146622
求助须知:如何正确求助?哪些是违规求助? 3683226
关于积分的说明 11638238
捐赠科研通 3376342
什么是DOI,文献DOI怎么找? 1853588
邀请新用户注册赠送积分活动 916069
科研通“疑难数据库(出版商)”最低求助积分说明 830135